
r
r

r

r

r

Prime® Subroutines
Reference II:
File System

Revision 23.0

DOC10081-2LA

Subroutines Reference II:
File System

Second Edition

Sonya Zegarra

This manual documents the software operation of the PRIMOS operating
system on 50 Series computers and their supporting systems and
utilities as implemented at Master Disk Revision Level 23.0
(Rev. 23.0).

Prime Computer, Inc., Prime Park, Natick, Massachusetts 01760

The information in this document is subject to change without notice and should not be
construed as a commitment by Prime Computer, Inc. Prime Computer, Inc., assumes no
responsibility for any errors that may appear in this document

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

Copyright © 1990 by Prime Computer, Inc. All rights reserved.

PRIME, PRIME, PRIMOS, and the Prime logo are registered trademarks of
Prime Computer, Inc. 50 Series, 400,750,850,2250,2350,2450,2455,2550,2655,
2755,2850,2950,4050,4150,4450,6150,6350,6450,6550,6650,9650,9655,9750,
9755,9950,9955,9955II, Prime INFORMATION CONNECTION, DISCOVER,
INFO/BASIC, MIDAS, MIDASPLUS, PERFORM, PERFORMER, PRIFORMA,
Prime INFORMATION, PRIME/SNA, INFORM, PRISAM, PRIMAN, PRIMELINK,
PRIMIX, PRIMEWORD, PRIMENET, PRIMEWAY, PRODUCER, PRIME TIMER,
RINGNET, SIMPLE, Prime INFORMATION/pc, PT25, PT45, PT65, PT200, PT250,
and PST 100 are trademarks of Prime Computer, Inc.

Printing History

First Edition (DOC10081-1LA) August 1986 for Revision 20.2
Update 1 (UPD10081-11A) July 1987 for Revision 21.0
Update 2 (UPD10081-12A) August 1988 for Revision 22.0
Update 3 On RLN10247-1LA) July 1989 for Revision 22.1
Second Edition (DOC10081-2LA) June 1990 for Revision 23.0

Credits

Editorial: Barbara Bailey
Index Development: Mary Skousgaard
Illustration: Elizabeth Wahle
Technical Support: Julie Cyphers
Production: Judy Gordon

How to Order Technical Documents

To order copies of documents, or to obtain a catalog and price list:

United States Customers International

Call Prime Telemarketing, Contact your local Prime
toll free, at 1-800-343-2533, subsidiary or distributor.
Monday through Thursday,
8:30 a.m. to 8:00 p.m. and
Friday, 8:30 a.m. to 6:00 p.m. (EST).

PRIME SERVICE5"

Prime provides the following toll-free number for customers in the United States needing
service:

1-80O-8OO-PRIME

For other locations, contact your Prime representative.

Surveys and Correspondence

Please comment on this manual using the Reader Response Form provided in the back of
this book. Address any additional comments on this or other Prime documents to:

Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, MA 01701

///

Reading Path for PRIMOS Documentation

Book Level

PRIMOS
User's
Guide

PRIMOS
Commands
Reference
Guide

Subroutines
Reference
1-V

1

Source
Level
Debugger
User's
Guide

^

SEGand
LOAD
Reference
Guide

Language
Reference
Guides

i

1

System
Architecture
Reference
Guide

i

Instruction
Sets Guide

*

'

Programmer's
Guide to
BIND and
EPFs

i

1 '

Advanced
Programmer's
Guide 1:
BIND and
EPFs

i

1 r

Assembly
Language
Programmer's
Guide

t

Advanced
Programmer's
Guide III:
Command
Environment

Introduction
for all Users

Reference
for all Users

Reference for
Programmers

Programmer
Tools

Advanced
Programmer
Information

QpathDIOOSI 2LA

IV

Contents

About This Book

Part I: Introduction

1 Overview of Subroutines
Functions and Subroutines . . . 1-1

Subroutine Descriptions . . . 1-2

Subroutine Usage... 1-2

Subroutine Parameters... 1-5

Part II: File Access and
Management Subroutines

2 Access Control
ACSCAT.

ACSCHG.

ACSDFT.

ACSLIK..

ACSLST..

ACSRVT.

ACSSET..

CALACS.

CATSDL .

GETIDS . .

GPAS$$. .

ISACLS . .

PASDEL..

. . 2 - 3

. . 2 - 5

. . 2 - 7

.2-9

, .2-11

. .2-13

.. 2-14

. .2-16

. .2-18

.2-19

.2-21

.2-23

.2-24

PA$LST . . . 2-25

PASSET... 2-27

SPAS$$. . . 2-29

3 Attaching
AT$...3-3

AT$ABS . . . 3-6

AT$ANY... 3-9

AT$HOM... 3-11

ATSLDEV . . . 3-13

AT$OR... 3-15

ATSREL . . . 3-17

ATSROOT... 3-19

ATCH$$. . . 3-20

GTROB$... 3-21

4 File and Directory Manipulation
APSFXS... 4-4

CH$MOD... 4-6

CLSFNR..

CLO$FN..

CLOSFU ..

CNAM$$.

CREA$$..

CREPW$.

DIRSCR..

DIRSLS . .

DIRSRD..

DIR$SE..

ENTSRD.

EQUALS.

EXTR$A.

FIL$DL..

FINFOS . .

FNCHKS.

FORCEW

GPATHS.

ISREM$.

.4-7

.4-9

.4-10

. .4-11

.4-13

. .4-14

.4-15

.4-17

.4-24

.4-29

. .4-38

. .4-40

. .4-41

.4-43

.4-45

. .4-49

. . . 4 -51

. .4-53

. .4-56

VI

r
f LDISK$. . . 4-58

LUDSK$. . . 4-61

NAM$AD_PORTAL . . . 4-63

NAM$L_GMT... 4-65

NAM$RM_PORTAL . . . 4-68

PARSRV . . . 4-69

PRWF$$.. . 4-71

Q$READ . . . 4-79

Q$SET. . . 4-82

RDEN$$. . . 4-84

RDLIN$. . . 4-85

SATR$$. . . 4-87

SGD$DL . . . 4-92

SGD$EX . . . 4-93

SGD$OP . . . 4-94

SGDR$$. . . 4-96

SIZES . . . 4-102

SRCH$$. . . 4-105

SRSFXS.. . 4-114

^ TNCHKS.. . 4-121

TSRC$$. . . 4-123

UNITS$. . . 4-124

WILD$. . . 4-125

WTLINS . . . 4-126

CAM File Subrouunes . . . 4-128

CFSEXT...4-132

J * CFSREM...4-134

CF$SME . . . 4-137

Part III: EPF Management Subroutines

5 EPF Management
EPFSALLC... 5-3

EPF$CPF.. . 5-5

EPF$DEL.. . 5-7

EPF$INIT... 5-9

EPFSINVK...5-11

VII

EPF$ISREADY . . . 5-15

EPFSMAP... 5-17

EPF$REG . . . 5-20

EPF$RUN . . . 5-22

EPF$UREG . . . 5-25

LN$SET . . . 5-27

REMEPF$. . . 5-29

RPL$. . . 5-31

Part IV: Command Environment Subroutines

6 Command Environment
CE$BRD... 6-2

CESDPT... 6-3

CL$PIX... 6-4

CP$. . . 6-8

GV$GET...6-11

GV$SET... 6-13

LIST$CMD . . . 6-15

LV$GET... 6-17

LV$SET . . . 6-19

RD$CE_DP
RD$CED . . . 6-21

Part V: Search Rules Subroutines

7 Search Rules
OPSR$... 7-3

OPSRS$... 7-9

SR$ABSDS . . . 7-16

SR$ADDB . . . 7-19

SR$ADDE... 7-22

SR$CREAT... 7-25

SRSDEL . . . 7-27

SRSDSABL... 7-29

SRSENABL . . . 7-32

SRSEXSTR . . . 7-35

SR$FR_LS . . . 7-39

VIII

SRSINIT... 7-41

SR$LIST... 7-43

SR$NEXTR . . . 7-47

SR$READ . . . 7-52

SR$REM... 7-56

SR$SETL . . . 7-59

SRSSSR... 7-62

Appendices

A Obsolete File System Subroutines
ATCH$$. . . A-2

CREA$$. . . A-5

CREPW$. . . A-7

RDEN$$. . . A-8

TSRC$$. . . A-17

B Data Type Equivalents

C Argument Parsing by the CL$PIX Subroutine
Overview . . . C-l

CL$PIX Operating Modes . . . C-l

Indexes

Index of Subroutines by Function
Access Category . . . FX-2

Access Server Names... FX-2

Arrays . . . FX-3

Asynchronous Lines . . . FX-3

Attach Points . . . FX-3

Binary Search . . . FX-4

Buffer Output... FX-4

Command Environment... FX-4

Command Level... FX-5

Condition Mechanism . . . FX-5

Controllers, Asynchronous, Multi-line... FX-6

IX

Data Conversion . . . FX-6

Date Formats . . . FX-6

Devices, Assigning or Attaching... FX-7

Disk I/O . . . FX-7

Drivers, Device-independent... FX-7

Encryption, of Login Password . . . FX-7

EPFs... FX-8

Error Handling, I/O... FX-9

Event Synchronizers and Event Groups . . . FX-9

Executable Images . . . FX-11

EXIT$ Condition . . . FX-11

File System Objects... FX-11

ISC . . . FX-14

Keyboard or ASR Reader... FX-15

Logging . . . FX-15

Matrix Operations . . . FX-15

Memory . . . FX-16

Message Facility . . . FX-17

Numeric Conversions . . . FX-17

Paper Tape... FX-17

Parsing... FX-18

Peripheral Devices . . . FX-18

Phantom Processes... FX-19

Process Suspension . . . FX-20

Query User... FX-20

Randomizing . . . FX-20

Search Rules . . . FX-20

Semaphores . . . FX-21

Sorting... FX-22

Strings... FX-23

System Administration . . . FX-24

System Information . . . FX-25

Timers . . . FX-26
User Information . . . FX-27

User Terminal... FX-28

Index of Subroutines by Name

Index

About This Book

The Subroutines Reference series describes the standard Prime® subroutines and
subroutine libraries. Each standard subroutine library is a file containing
subroutines that perform a variety of related programming tasks. Whenever
these tasks are to be performed, programmers can call the appropriate
subroutines in the standard libraries instead of writing their own subroutines.
Programmers need to write subroutines only to perform specialized tasks for
which no standard subroutines exist.

Overview of This Series

The Subroutines Reference consists of five volumes. A brief summary of the
contents of each volume follows.

Volume I: Using Subroutines

Volume I introduces the Subroutines Reference series. It describes the nature and
functions of the Prime standard subroutines and subroutine libraries. It explains
how subroutines can be called from programs written in the Prime programming
languages: C, COBOL 74, FORTRAN IV, FORTRAN 77, Pascal, PL/I, BASIC
V/M, and PMA.

Volume II: File System

Volume II describes subroutines that deal with the access to and management of
file system entities, the manipulation of EPFs in the execution environment,
system search rules, and the use of a number of command environment
functions.

Volume III: Operating System

Volume III describes system subroutines. The subroutines covered in this
volume are general system calls to the operating system and the standard system

Second Edition xi

Subroutines Reference II: File System

library. These include subroutines for system and user IDs and status, along with
the System Information and Metering (SIM) routines. This volume also includes
calls for terminal I/O, memory allocation, and program control. Data conversion
routines, error message and condition handling routines, semaphores, and an
interuser message facility are all found in this volume. An appendix to Volume
III lists PRIMOS® standard conditions.

Volume IV: Libraries and I/O

Volume IV presents several mature libraries: the Input/Output Control System
(IOCS) library and other VO-related subroutines, the Application library, the Sort
libraries, the FORTRAN Matrix library (MATHLIB), and the CONFIG_USERS
library.

IOCS provides device-independent I/O. The chapters on IOCS provide
descriptions of the device-independent subroutines plus those device-dependent
subroutines simplified by IOCS. Another section provides descriptions of the
synchronous and asynchronous device-driver subroutines.

Sections on the Application library, the Sort libraries, and the FORTRAN Matrix
library provide descriptions of other program development subroutines
especially useful for FORTRAN programs.

The section on CONFIG_USERS describes the subroutines available to the
System Administrator who wants to create tailor-made administration programs.
CONFIG_USERS replaced EDIT_PROFILE at Rev. 22.1.

Volume V: Event Synchronization

Volume V describes event synchronization and two facilities that use event
synchronization: the Timers facility and the InterServer Communications (ISC)
facility. ' ^ N

• Event synchronization is made possible by event synchronizers. This
volume documents subroutines with which users can create, destroy, and
post and receive notices on their event synchronizers. It also describes
subroutines that associate several event synchronizers into an event group.

• The Timers facility makes time-dependent process synchronization
possible. This volume describes subroutines with which users can create,
destroy, set and reset timers that post notices on event synchronizers at a
specified time or interval.

• The ISC facility makes it possible for processes that are running
concurrently to exchange messages. This volume describes subroutines for
establishing a message session and sending and receiving messages
between two processes. These processes may be running on the same

xii Second Edition

About This Book

system or on two different systems connected by PRIMENET ™. Message
exchange is coordinated by using event synchronizers.

Specifics of This Volume

Volume II of the Subroutines Reference series presents detailed descriptions of
system search rule subroutines and subroutines used in manipulating file system
entities. It also describes subroutines related to EPF manipulation and the
command environment.

Chapters 2,3, and 4 describe three groups of file system subroutines: those that
control access to objects, that attach to file directories, and that operate on
(creating, using, and deleting) the objects themselves.

Chapter 5 describes subroutines that deal with the initialization, execution, and
maintenance of executable program format (EPF) files, and the management of
dynamic storage space required for their execution.

Chapter 6 describes a group of subroutines that enable user programs to take
advantage of some of the functions built into the command environment:
determining the command environment breadth and depth, setting and retrieving
local and global variables, parsing command lines, and related operations. Some
of these subroutines are particularly useful when used in routines that are called
by CPL programs.

Chapter 7 describes system search rule subroutines that enable users to read and
modify the sequential search lists that PRIMOS uses to locate file system
objects.

The appendices provide information about obsolete subroutines, data type
equivalents, and argument parsing by the CL$PIX subroutine.

Three indexes enable the reader to find information quickly.

• The Index of Subroutines by Function, a list of all subroutines in the
five-volume series, grouped by the general types of function that they
perform. Use this index to find out which subroutines perform a particular
function, then use the Index of Subroutines by Name to locate the desired
subroutine.

• The Index of Subroutines by Name, an alphabetical list of all subroutines
in the five-volume series. It lists the volume, chapter, and page number of
the reference material for each subroutine.

The Volume Index, a list of the topics treated in this volume. Use this index
to find out where in this volume a particular topic, process, or term is
described.

Second Edition xiii

Subroutines Reference li: File System

Suggested References

The other volumes of the Subroutines Reference document set are the following:

• Subroutines Reference I: Using Subroutines (DOC10080-2LA) and its
update for Rev. 23.0 (UPD10080-21 A)

• Subroutines Reference III: Operating System (DOC10082-2LA)

• Subroutines Reference IV: Libraries and I/O (DOC 10083-2LA)

• Subroutines Reference V: Event Synchronization (DOC10213-1LA) and its
update for Rev. 23.0 (UPD10213-11A)

The five volumes of the Subroutines Reference and their current updates can be
ordered as a set using DCP10159.

The PRIMOS User's Guide (DOC4130-5LA) contains information on system
use, directory structure, the condition mechanism, CPL files, ACLs, global
variables, and how to load and execute files with external subroutines. New
information for Rev. 23.0 can be found in the PRIMOS User's Release Document
(DOC10316-1PA).

Also available for Rev. 23.0 is the Rev. 23.0 Software Release Document
(DOC10001-7PA). This contains information primarily of interest to System
Administrators and operators.

The Programmer's Guide to BIND and EPFs (DOC8691-1LA) and its updates
for Rev. 22.0 (UPD8691-11A) and Rev. 23.0 (UPD8691-12A) show application
programmers how to use the executable program format environment.

The Advanced Programmer's Guides, the companions to the Subroutines
Reference series, consist of four volumes:

• Advanced Programmer's Guide I: BIND and EPFs (DOC 10055-2LA)

• Advanced Programmer's Guide II: File System (DOC 10056-3LA)

• Advanced Programmer's Guide III: Command Environment
(DOC10057-2LA)

• Advanced Programmer's Guide: Appendices and Master Index
(DOC10066-4LA)

These volumes provide strategies for the use of subroutines by system
programmers and application programmers. They provide the most complete
information on the use of EPFs, of file system subroutines, and of command
environments. The Appendices and Master Index volume contains an annotated
listing of all PRIMOS standard error codes, as well as an index to the entire
Advanced Programmer's Guide documents set.

xiv Second Edition

About This Book

The following related Prime publications are also available:

• Operator's Guide to System Commands (DOC9304-5LA)

• System Administrator's Guide, Volume I: System Configuration
(DOC10131-3LA)

• System Administrator's Guide, Volume II: Communication Lines and
Controllers (DOC10132-2LA), updated by RLN10132-21 A.

• System Administrator's Guide, Volume III: System Access and Security
(DOC10133-3LA)

• System Architecture Reference Guide (DOC9473-2LA)

For a complete list of available Prime documentation, consult the Guide to Prime
User Documents.

Second Edition xv

Subroutines Reference II: File System

Prime Documentation Conventions

Subroutine descriptions use the conventions shown below. Examples illustrate
use of these conventions.

Convention Explanation

Uppercase In subroutine descriptions, words in
uppercase indicate actual names of
commands, options, statements, data
types, and keywords.

Italic In subroutine descriptions, words in
italic indicate variables for which
you must substitute a suitable value.

Abbreviations If a subroutine has an abbreviation,
the abbreviation is placed immedi
ately below the full form.

Bold In the Usage section, bold indicates
the DECLARE and CALL state
ments of the subroutine.

Bold italic In the Usage section, bold italic in
dicates variable parameters of the
subroutine.

Monospace Words and characters in monospace
indicate system output, for example,
error messages, prompts, examples,
and text in screens.

Underscore In examples, user input is under-
(in examples) scored, but system prompts and out

put are not.

Brackets In DECLARE and CALL state
ments, brackets indicate an optional
parameter or argument.

Hyphen Wherever a hyphen appears as the
first character of an option, it is a
required part of that option.

Subscript A subscript after a number indicates
that the number is not in base 10.
For example, the subscript 8 is used
for octal numbers.

Parentheses In CALL statements, parentheses
must be entered exactly as shown.

Example

FIXED BIN

key, filename

TMR$GTIM
TMR$TM

CALL DATE$A (date)

date

FILE NOT FOUND

OK, CBL ROTATE

[RETURNS(FIXED BIN(31)]

SPOOL -LIST

2008

CALL TIMDAT (array, n)

xvi Second Edition

Overview of Subroutines

1

A subroutine is a module of code that can be called from another module. It is
useful for performing operations that cannot be performed by the calling
language, or for performing standard operations faster. Users can write their own
subroutines to supply customized or repetitive operations. However, this guide
discusses only standard subroutines provided with the PRIMOS operating
system or in standard libraries.

This chapter summarizes the calling conventions for Prime subroutines and
explains the format of the subroutine descriptions. It assumes that readers know
a high-level language or PMA (Prime Macro Assembler), and that they are
familiar with the concept of external subroutines. For more information on
calling subroutines from Prime languages, see the chapter on your particular
language in Volume I.

Functions and Subroutines

In this guide, a function is a call that returns a value. You call a function by
using it in an expression; the function's returned value can then be assigned to a
variable or used in other operations within the expression. Here, the value
returned by TNCHK$ is assigned to the variable VALUE 1:

VALUEl = TNCHK$(argl, arg2);

A subroutine returns values only through its arguments. It is called this way:

CALL AC$SET(argl , a r g 2 , a r g 3 , a r g 4) ;

However, the word subroutine is also used as the collective term for both of
these modules.

Second Edition 1-1

Subroutines Reference II: File System

Subroutine Descriptions

In this guide, each subroutine description contains the following sections (see
Figure 1-1):

•

•

•

Usage. The format of a subroutine declaration and a subroutine call, using
PL/I language elements. For further information, see the section
Subroutine Usage below.

Parameters. Information about the arguments the subroutine expects and
the values it returns. For further information, see the section Subroutine
Parameters later in this chapter.

Discussion. Additional information about the subroutine and examples of
its use.

Loading and Unking Information. Information about what libraries must
be loaded during the loading and linking process. For more information,
see Satisfying the References at Load Time later in this chapter.

Subroutine Usage

The Usage section of each subroutine description includes two items of
information:

• How to declare the subroutine in a program

• How to invoke it in a program

The notation used is that of the PL/I language. If you do not know PL/I, the
explanation of the relevant PL/I syntax and data types in this section and the
Subroutine Parameters section should enable you to call these subroutines from
other languages.

Not all languages require that a subroutine be declared, but the Usage section
should always be referred to for information on data types.

1-2 Second Edition

Overview of Subroutines

ATSHOM

Subroutines Reference It File System

ATSHOM

3-12 Second Edition

ATSHOM scis ihc attach point to ihc home directory.

Usage

DCL ATSIIOM KNTRY (FIXED BIN);

CALL ATSIIOM (tort);

Parameters

code

OUTPUT. Standard error code. The following error codes are specific to ihi-
suhroulinc:

Ki-ywnrd Vuiv Mi ming

ESSHDN 12I

No top-level directory attached. This error usually occurs only
when the disk on whî h the home directory abides h.ts heen
removal from ihc system, as when a disk is shut down. Once a
disk has been shutdown, .ill home directories residing on that
disk for all currently loggcd-in users are lost. These home
directories can be reestablished by the users only by issuing an
ATTACH command after the disk is started up again.

The disk has been shut down. The disk on which the home
directory resides has been shui down (using the SI IUTDN
command as described in the Operator's Guide to Sy.i-.cm
Commands). The disk is no longer available for use. unlit the
system operator uses the ADDISK command to add the disk
again. After this is done, the user must issue the ATTACH
command again lo reestablish his or her home directory.

Discussion

The ATSIIOM call rciums Ihc current allach point lo ihc home directory. Il can
he used after any allach operation that attaches away from the home directory
(Ihal is. after an attach call is made in which the KSSETH key option was
available hut not used). It functions in ihc s.imc way as die ATTACH command
with no argument (described in the PRIMOS Commands Reference Guide).

Loading and Linking Information

V-mtxlc and I-tnode: No special action.

V-modc and I-modc with unshared libraries: Load NPFTNLR.

R-mode: Not available.

I01OID1008121A

Figure 1-1. A Subroutines Description

Second Edition 1-3

Subroutines Reference II: File System

Subroutine Declarations

The following example shows a subroutine declaration:

DCL AC$SET ENTRY (FIXED BIN, CHAR(128)VAR, PTR,
FIXED BIN) ;

DCL is the short form of DECLARE. The DECLARE statement is used to
declare all data types, including those involved in subroutines and functions.
AC$SET is the subroutine name. ENTRY specifies that the item being declared
is an entrypoint in a subprogram external to the program from which it is called.

The items in parentheses are the parameters of the subroutine. The parameters
indicate the data types required for each argument of the subroutine.

Subroutine Calls

The following example shows a call to the subroutine declared above:

CALL AC$SET (key, name, acl_ptr, code)/

PL/I does not distinguish between uppercase and lowercase characters. In the
Usage section of a subroutine description, lowercase letters indicate the items
that must be supplied by the user, both arguments (actual parameters, as opposed
to formal parameters) and data items. These are described more fully in the
Parameters section. Uppercase letters indicate items that must be copied exactly
as shown.

The CALL statement above invokes the subroutine AC$SET. The arguments in
parentheses correspond to the parameters in the subroutine declaration. The
variables or constants used as arguments in a call to the subroutine must match
the data types of the parameters in the declaration. Here, the variable name must
be a character string, while key and code must be integers. A subroutine that has
no parameters is invoked simply by giving the CALL keyword and the name of
the subroutine:

CALL TONL;

Function Declarations

The following example shows a function declaration:

DCL ISACL$ ENTRY (FIXED BIN, FIXED BIN) RETURNS (BIT(l));

The only difference between a function declaration and a subroutine declaration
is at the end of the DECLARE statement. The function declaration contains the

1-4 Second Edition

Overview of Subroutines

keyword RETURNS, followed by a returns descriptor specifying the data type
of the value returned by the function. In this case, it is a logical or Boolean value
— one that equates to TRUE or FALSE.

Function Calls

A function is invoked when its name is used as an expression on the right side of
an assignment statement. The following example shows an invocation of the
function declared above:

is_acl_dir = ISACL$ (unit, code);

The equal sign (=) is the assignment operator. is_acl_dir is a logical (Boolean)
variable that is assigned the value returned by the call to ISACL$. unit and code
represent integer values.

Functions Without Parameters

A function that takes no parameters is invoked with an empty argument list. The
DATES subroutine is declared as follows:

DCL DATE$ ENTRY RETURNS(FIXED BIN(31));

Its invocation looks like this:

date word = DATE$() ;

Note Functions that take no arguments cannot be called from FTN programs; they can,
however, be called from F77 programs.

Subroutine Parameters

Subroutines usually expect one or more arguments from the calling program.
These arguments must be of the data type specified in the DECLARE statement.
Volume I discusses how to translate the data types indicated by the PL/I
declarations into other Prime languages. A chart summarizing data type
equivalents for all Prime languages is in Appendix B of this volume.

You must provide the number of arguments expected by the subroutine, in the
order in which they are expected. If too few arguments are passed, execution
causes an error message such as POINTER FAULT or ILLEGAL SEGNO. If too

Second Edition 1-5

Subroutines Reference II: File System

many arguments are passed, the subroutine ignores the extra arguments, but will
probably perform correctly. A small number of subroutines, such as IOA$,
accept varying numbers of arguments.

The Usage section of a subroutine description gives the data types of the
parameters. The Parameters section explains what information these parameters
contain and what they are used for. Each parameter description in this section
begins with a word in uppercase that indicates whether the parameter is used for
input or output:

• INPUT means that the parameter is used only for input, and that its value is
not changed by the subroutine.

• OPTIONAL INPUT refers to an input parameter that may be omitted. See
the section Optional Parameters later in this chapter.

• OUTPUT means that the parameter is used only for output You do not
have to initialize it before you call the subroutine.

• OPTIONAL OUTPUT refers to an output parameter that may be omitted.
See the section Optional Parameters later in this chapter.

• INPUT/OUTPUT means that the parameter is used for both input and
output. The argument you pass to it may be changed by the subroutine.

• INPUT -> OUTPUT refers to a situation in which

o The parameter, an input parameter, is a pointer.

o The data item to which the pointer points is not a parameter of the
subroutine, but it is changed by the subroutine.

• RETURNED VALUE is the value returned by a function. (It is not, strictly
speaking, a parameter.)

• OPTIONAL RETURNED VALUE is the value returned by a subroutine
that can be called either as a function or as a procedure. See the section
Optional Returned Values later in this chapter.

Parameters and Returned-value Data Types

A PL/I parameter specification consists simply of a list of the data types of the
parameters. The data types you will encounter, both in the parameter list and in
the RETURNS part of a function declaration, are the following:

CHAR(n) Also specified as CHARACTER(n),
CHARACTER^) NONVARYING. Specifies a
character string or array of length n. A CHAR(AI)
string is stored as a byte-aligned string, one
character per byte. (A byte is 8 bits.)

1-6 Second Edition

Overview of Subroutines

CHAR(*)

CHAR(K) VAR

CHAR(*) VAR

FIXED BIN

FIXED BIN(31)

(n) FIXED BIN

FLOAT BIN

FLOAT BIN(47)

BIT(l)

BIT(n)

POINTER

Also CHARACTER(*), CHARACTER(*)
NONVARYING. Specifies a character string or
array whose length is unknown at the time of
declaration. A CHAR(*) string is stored as a
byte-aligned string, one character per byte.

Also CHARACTER(n) VARYING. Specifies a
character string or array whose length can be a
maximum of n characters. The first two bytes (one
halfword) of storage for a CHAR(n) VAR string
contain an integer that specifies the string length;
these are followed by the string, one character per
byte.

Also CHARACTER(*) VARYING. Specifies a
character string or array whose length is unknown at
the time of declaration. The first two bytes (one
halfword) of storage for a CHAR(*) VAR string
contain an integer that specifies the string length;
these are followed by the string, one character per
byte.

Also HXED BINARY, BIN, HXED BIN(15).
Specifies a 16-bit (halfword) signed integer.

Specifies a 32-bit signed integer.

An integer array of n elements. See below for more
information about arrays.

Also FLOAT BIN(23), FLOAT. Specifies a 32-bit
(one-word) floating-point number.

Specifies a 64-bit (double-word) floating-point
number.

Specifies a logical (Boolean) value. A bit value of 1
means TRUE; a value of 0 means FALSE.

Specifies a bit string of length n. BYT(n) ALIGNED
means that the bit string is to be aligned on a
halfword boundary.

AlsoPTR. Specifies a POINTER data type. A
pointer is usually stored in three halfwords (48 bits).
If the pointer will point only to haifword-aligned
data, it may occupy two halfwords (32 bits). The
item to which the pointer points is declared with the
BASED attribute (for instance, BASED FIXED
BIN).

Second Edition 1-7

Subroutines Reference II: File System

POINTER OPTIONS (SHORT)
Same as POINTER except that it always occupies
only two halfwords and can only point to
halfword-aligned data.

Note When used as a parameter, POINTER can generally be used interchangeably with
POINTER OPTIONS (SHORT).

When used as a returned function value, POINTER OPTIONS (SHORT) can be used in
any high-level language except Pascal or 64V mode C, which require returned pointers to
be three halfwords; in these cases, POINTER must be used. C in 32IX mode accepts only
halfword-aligned, two-halfword pointers, and therefore requires the use of POINTER
OPTIONS (SHORT).

Sometimes an argument is defined as an array or a structure. An array
declaration looks like this:

DCL ITEMS(10) FIXED BIN;

Here, ITEMS is a 10-element array of integers. The keywords FIXED BIN,
however, can be replaced by any data type. In PL/I, by default, arrays are
indexed starting with the subscript 1; the first integer in this array is ITEMS(l).

An array with a starting subscript other than 1 is declared with a range
specification:

DCL WORD(0:1023) BASED FIXED BIN;

WORD is an array indexed from 0 through 1023, and its elements are referenced
by POINTER variables.

A structure is equivalent to a record in COBOL or Pascal. A structure
declaration looks like this:

DCL 1 fs_date,
2 year BIT(7),
2 month BIT (4),
2 day BIT (5),
2 quadseconds FIXED BIN(15);

The numbers 1 and 2 indicate the relative level numbers of the items in
the structure. The name of the structure itself is always declared at level 1. The
level number is followed by the name of the data item and its data type. In this
example, the structure occupies a total of 32 bits. (Remember that a FIXED
BIN(15) value occupies 16 bits of storage.)

1-8 Second Edition

Overview of Subroutines

Since no names are given to data items in parameter lists, the array declared
above as ITEMS would be declared simply as (10) FIXED BIN. Similarly, the
structure FS_DATE would be listed as

(. . . , 1 , 2 B I T (7) , 2 B I T (4) , 2 B I T (5) , 2 FIXED B I N (1 5) ,

Optionai Parameters

On Prime computers, some subroutines and functions are designed so that one or
more of their parameters, input or output, can be omitted. Candidates for
omission are always the last n parameters. Thus, if a subroutine has a full
complement of three parameters, it may be designed so that the last one or the
last two can be omitted; the subroutine cannot be designed so that only the
second parameter can be omitted. The first parameter can never be omitted.

In the Usage section of a subroutine description, any optional parameters are
enclosed in square brackets, as in the following declaration and CALL statement:

DCL CNAM$$ ENTRY (CHAR<32), FIXED BIN, CHAR(32),
FIXED BIN, FIXED BIN [, FIXED BIN]);

CALL CNAM$$ (oldnam, oldlen, newnam, newlen, code
[, ok_open]) ;

In some cases, parameters can be omitted because they are not needed under the
circumstances of the particular call. In other cases, when the parameter is of
type INPUT, the subroutine will detect the missing parameter and will assume
some value for it. For example, C1IN$, described in Volume III, can be called
with one, two or three arguments:

CALL C1IN$ (char);
CALL C1IN$ (char, echc_flag);
CALL C1IN$ (char, echo_flag, term_flag);

If echojlag is missing, the subroutine acts as if it had been supplied with a value
of TRUE. If termjlag is missing, the subroutine acts as if it had been supplied
with a value of FALSE.

In still other cases, the subroutine changes its behavior depending on the
presence of the parameter. For example, the subroutine CH$FX1 (described in
Volume HI) uses its third argument to return an error code. If the code argument
is omitted and an error occurs, the routine signals a condition instead.

If a parameter can be omitted, it is described as OPTIONAL INPUT or
OPTIONAL OUTPUT in the routine description. Most of the routines described
in the Subroutines Reference have no optional parameters.

Second Edition 1-9

Subroutines Reference II: File System

Optional Returned Values

In the architecture of Prime computers, a subroutine that was designed as a
function can be called as a subroutine using the CALL statement. Frequently
this makes no sense. The statement

CALL S I N (4 5) ;

does nothing useful; the value that the SIN function returns is lost. But, with
functions that change some of their parameters as well as return a value, the
returned value can be useful in some contexts and not of interest in other
contexts. Consider the function CL$GET, described in Volume III. It reads a line
from the user terminal and, in addition, returns a flag that indicates whether a
command input file is active. Most programs do not need to know whether a
command input file is active. They would call CL$GET as a subroutine:

CALL CL$GET (BUFFER, 80, CODE);

A program that was interested in command input files, however, would call
CL$GET as a function:

COMISW = CL$GET (BUFFER, 80, CODE);

Note In PL/I and Pascal, a given subroutine cannot be used both as a subroutine and as a
function within a single source module.

The Usage section of the subroutine descriptions gives both the function
invocation and the subroutine invocation for subroutines that are likely to be
called in both ways.

In the Parameters section, a routine that is designed as a function has its returned
value described as RETURNED VALUE if it is considered the main purpose of
the subroutine to return the value. If the function is likely to be called as a
subroutine — that is, if returning the value is considered to be something that is
needed only on some occasions — the returned value is described as
OPTIONAL RETURNED VALUE.

How to Set Bits in Arguments

Sometimes a subroutine expects an argument that consists of a number of bits
that must be set on or off.

A data item is stored in a computer as a collection of bits, which can each have
one of two values, off or on. On Prime computers, off is arbitrarily equated to the
bit value 'O'B or false, and on is equated to 'l 'B or true. (This is not the same as
the FORTRAN values .FALSE, and .TRUE., which are the LOGICAL data type

1-10 Second Edition

Overview of Subroutines

and are really integers.) When bits are stored as part of a group, however, the
position of the bit gives it a numeric value as well as the bit value ' 1 'B or 'O'B.
Its position equates it to a power of 2. Consider an argument that contains only
two bits, represented in Figure 1-2.

Bit 1 Bit 2

2**1 2**0 10102D10OS12LA

Figure 1-2. Values of Bit Positions — Two Bits

The low-order bit is in the position of 2 to the 0 power, and its value, if ON, is 1.
The high-order bit is in the position of 2 to the first power, and its value, if ON,
is 2. (If OFF, the value of a bit is always 0.) By convention, the low-order bit is
called the rightmost bit and the high-order bit is called the leftmost bit.

In an argument containing 16 bits, choose the bits that you want to set ON,
compute their value by position, and add these values. The resulting decimal
value is what you should assign to the subroutine argument for the options you
want. You can pass an integer as an argument that is declared as BIT(n)
ALIGNED. The subroutine interprets the integer as a bit string. For example, if
you want to set the sixteenth and the seventh bits, compute 2 to the 0 power plus
2 to the ninth power, which amounts to 1 plus 512, or 513. Figure 1-3 illustrates
values of bit positions in a 16-bit argument.

If an argument is declared as BIT(l) or BIT(l) ALIGNED, the bit passed is the
most significant (leftmost) bit of the memory location referred to.

Bit 1 Bit 7 Bit 16

2**15 2**9 2**0
101D3D100&12LA

Figure 1-3. Values of Bits in a 16-bit Argument

Key Names as Arguments

In calls to many subroutines, data names known as keys can be used to represent
numeric arguments. The subroutine description explains which key to use.

Second Edition 1-11

Subroutines Reference II: File System

Key Names as Arguments

In calls to many subroutines, data names known as keys can be used to represent
numeric arguments. The subroutine description explains which key to use.
Numeric values are associated with these keys in the SYSCOM directory. The
keys in SYSCOM are listed in Volume I.

Keys are of the form x$yyyy, where x is either K or A and yyyy is any
combination of letters. Keys that begin with K concern the file system; those
that begin with A concern applications library routines. Examples are:

K$CURR
A$DEC

For example, in the subroutine call

CALL GPATH$ (K$UNIT other arguments...);

the key K$UNIT stands for a numeric constant value expected by the subroutine.
If a subroutine expects key arguments, the description of that subroutine explains
which keys to use in which circumstances.

Each language has its own files of keys. The chapters on individual languages in
Volume I explain how to insert these files into your program. Key files have the
pathnames

SYSCOM>KEYS.INS.language

for K$yyyy keys, and

SYSCOM>A$KEYS.INS.language

for A$yyyy keys, where language is the suffix for that language. For more
information about keys, see Volume I.

Standard Error Codes

Many subroutines include as an argument a standard error code, which is similar
to a key. The error code corresponds to an error message that the subroutine can
return to indicate that the call to the subroutine succeeded or failed, or to report
some other condition worth noting.

Standard error codes are of the form E$xxxx, where xxxx is any combination of
letters. For example, the error code E$DVIU corresponds to the error message
The device i s in use . .

1-12 Second Edition

Overview of Subroutines

The standard error codes are defined in the SYSCOM directory. Like a key file,
the error code file for a particular language must be inserted in the program that
calls the subroutine. Each error code file has the pathname

SYSCOM>ERRD.INS.language

where language is the suffix for that language. Volume I contains a listing of the
standard error codes and the messages to which they correspond. For
explanations of the standard error codes, see the Advanced Programmer's Guide:
Appendices and Master Index.

Libraries and Addressing Modes

The Subroutines Reference is organized to give a systematic description of
subroutine libraries — sets of routines, all broadly dealing with the same subject,
grouped into one file. There is a separate library for each of these subjects.

Prime computers offer several addressing modes to provide source-level
compatibility among several machine models. To maintain this compatibility, a
given subroutine library normally exists in three general versions: V-mode,
V-mode (Unshared), and R-mode. A discussion of shared and unshared
libraries appears in Volume I of Subroutines Reference. For a description of
addressing modes, see the System Architecture Reference Guide.

Programs compiled in either V-mode or I-mode can use either V-mode or
I-mode libraries (V-mode libraries supplied by Prime serve both V-mode and
I-mode programs). Programs written in R-mode must use the R-mode version
of the library.

Loading and Linking Information

Every subroutine description contains a section entitled Loading and Linking
Information, which describes what, if any, action to take to permit linking to the
subroutine from programs in each of the compilation modes.

In these sections, some subroutines are designated as not available in one or
more versions (most often the R-mode version). If a subroutine is not available
in a given mode, it means that that subroutine cannot be called from a program
written and compiled in that mode. For example, programs intended to
manipulate EPFs using the EPF subroutines cannot be linked and executed in
R-mode, since there are no R-mode versions of these subroutines. Such
programs must be written, compiled, and linked in V-mode or I-mode.

Second Edition 1-13

Subroutines Reference II: File System

Satisfying the References at Load Time

When subroutines are called by a program, the references must be satisfied when
the compiled binaries are linked together with BIND, SEG, or LOAD (the
R-mode loader).

This is accomplished by loading a binary library supplied by Prime using the LI
(for Library) command. The Loading and Linking Information section under
each subroutine description provides the information for up to three loading
choices:

• V-mode or I-mode, with shared code. This is the preferred method, as it
allows many users of a system to share the same copy of code.

• V-mode or I-mode with unshared code.

• R-mode.

For most subroutines described in this volume, only the V-mode or I-mode
subroutines with unshared code require a special library. Both the shared version
and the R-mode version (when available) require "no special action." This
means that the LI[brary] command with no arguments, which normally ends a
loading sequence, satisfies the references.

Getting the Subroutines at Runtime

When a subroutine is available to be shared between users, PRIMOS postpones
finding the code until runtime. (Other subroutines have their code so linked with
the program that they are called "unshared" routines.) The program linked to
shared subroutine code contains only the name of the subroutine, and at runtime
PRIMOS replaces the name with the actual location of the shared code, thus
completing the connection. For the connection to happen, the code must be in
one of three places: in PRIMOS itself, in an EPF library, or in a static-mode
library. Furthermore, the user's ENTRY$ search list must contain a pathname to
the library that holds the code, unless the subroutine is located in PRIMOS.

If the Loading and Linking Information section indicates "no special action" for
loading a subroutine library, then the code for this subroutine is either in
PRIMOS itself or in one of the two EPF libraries suplied by Prime,
SYSTEM_LIBRARY.RUN or PRIMOSJLIBRARY.RUN. The pathnames to
these libraries must be in the system search rules.

Because many of the subroutines described in this guide provide PRIMOS
services, there is no way of providing them as unshared code, since PRIMOS by
definition is shared. Even if you call these subroutines from programs that are
loaded with unshared libraries, what is executed by these calls is shared code.

For a further description of libraries and related terminology, see Subroutines
Reference I: Using Subroutines.

1-14 Second Edition

Access Control

2

Access control refers to the protection that PRIMOS and the user can specify for
a file system object to prevent unauthorized access to it. Protection is defined by
use of a list called an access control list, or ACL.

This chapter describes a set of system subroutines that can be used to manipulate
the access control lists of file system objects.

Subroutines are provided to set, modify, and delete ACLs on most types of
objects: access categories, user file directories, segment directories, and files.
ACLs of master file directories (MFDs) can be manipulated only by a System
Administrator or by a user working at the terminal designated as the supervisor
terminal (User 1).

Several subroutines can be used to obtain access control information, while
others can manipulate the older password-protected directories and files.

User programs can also use the ACL mechanism to control user access to
resources other than files.

Detailed information on the use of ACLs can be found in the PRIMOS User's
Guide and in the Advanced Programmer's Guide II: File System.

The following subroutines, their declarations, and their calling sequences are
described in this chapter:

AC$CAT Add an object's name to an access category.

AC$CHG Modify an existing ACL on an object.

AC$DFT Set an object's ACL to that of its parent directory.

AC$LIK Set an object's ACL like that of another object.

AC$LST Obtain the contents of an object's ACL.

AC$RVT Convert an object from ACL protection to password

protection.

AC$SET Set a specific ACL on an object.

CALAC$ Determine whether an object is accessible for a given action.

CAT$DL Delete an access category.

GETID$ Obtain the user ID and the groups to which it belongs.

Second Edition 2-1

Subroutines Reference II: File System

GPAS$$ Obtain the passwords of a subdirectory of the current
directory.

ISACL$ Determine whether an object is ACL-protected.

PA$DEL Remove an object's priority access.

PA$LST Obtain the contents of an object's priority ACL.

PA$SET Set priority access on an object.

SPAS$$ Set the owner and nonowner passwords on an object.

2-2 Second Edition

AC$CAT

Access Control

AC$CAT

AC$CAT adds an object's name to an access category.

Usage

DCL AC$CAT ENTRY (CHAR(128)VAR, CHAR(32)VAR, FIXED BIN);

CALL AC$CAT (name, categoryjname, code)',

Parameters

name
INPUT. Pathname or objectname of the object to be protected.

category_name
INPUT. Name of the category to which object_path is to be added.

code
OUTPUT. Standard error code.

Discussion

An access category provides protection to any number of objects without using
the disk space that would be required to place a specific ACL on each of the
objects. Since an access category uses about the same disk space as two average
ACLs, whenever more than two objects require the same protection, the user
should consider using an access category.

The object named in name must exist and must be a file, a file directory, or a
segment directory. If the object is in the current directory, name can be a simple
objectname.

The access category must exist in the same directory as the object. If the object is
password-protected and its parent is an ACL directory, the object is converted to
ACL protection.

Protect and List access are required on the parent directory if the object is a file;
if it is a directory or an access category, Protect access is required on the object
itself. If the object is a password directory and Protect access is not available on
its parent, Owner access is required on the object. Use access is required for each
intermediate subdirectory in the path.

To create an access category and to set specific ACLs, refer to the AC$SET
subroutine, described later in this chapter.

Second Edition 2-3

AC$CAT

Subroutines Reference II: File System

For more information on the use of access categories, refer to the PRIMOS
User's Guide.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

2-4 Second Edition

AC$CHG

Access Control

AC$CHG

AC$CHG modifies an existing ACL on an object.

Usage

DCL AC$CHG ENTRY (CHAR(128)VAR, PTR, FIXED BIN);

CALL AC$CHG (name, acl_ptr, code);

Parameters

name
INPUT. Pathname or objectname of the object whose ACL is to be modified.

acljptr
INPUT. Pointer to the ACL structure (the structure declaration is described
with AC$LST, later in this chapter).

code
OUTPUT. Standard error code.

Discussion

AC$CHG updates an existing ACL with new data. It performs the same
function as the EDIT_ACCESS (EDAC) command described in the PRIMOS
Commands Reference Guide. The object whose access is to be changed must be
an existing access category or a specifically protected object. If it is not, an error
is returned.

If the object whose ACL is to be changed is in the current directory, name can be
a simple objectname.

The user specifies the changes to be made to the ACL by means of an ACL
structure in the program, formatted as described under the AC$LST subroutine,
later in this chapter. Each entry must have a user ID part, and may or may not
have an access part. As in the EDAC command, if the access half of the user
ID/access pair in the structure is null, the entry having this user ID in the ACL is
removed from the ACL. If the user ID in the structure already exists in the ACL,
this user's access is changed to that specified in the structure; if the user ID does
not exist in the ACL, the user ID and its accompanying access half are added to
the ACL.

Protect and List access are required on the parent directory if the object is a file,
or on the object itself if it is a directory or access category. Use access is required

Second Edition 2-5

AC$CHG

Subroutines Reference II: File System

for each intermediate subdirectory in the path. An attempt to use AC$CHG on an
object with password protection returns an error.

For more information on manipulating access control lists, refer to the PRIMOS
User's Guide.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

2-6 Second Edition

AC$DFT

AC$DFT

Access Control

AC$DFT sets an object's ACL to that of its parent directory.

Usage

DCL AC$DFT ENTRY (CHAR(128)VAR, FIXED BIN);

CALL AC$DFT (name, code);

Parameters

name
INPUT. Pathname or objectname of the object whose protection is to be
changed.

code
OUTPUT. Standard error code.

Discussion

The AC$DFT call sets the protection of the object named in name to that of the
parent directory (which can itself default to that of a directory one or more levels
higher). In the absence of any specific access control operations on a given
object, the object always retains the default access it was given when it was
created.

The object must exist when the AC$DFT call is made, and can be a file, a file
directory, or a segment directory. If name is a password directory and its parent
is an ACL directory, name is converted to an ACL directory. An attempt to use
AC$DFT on an MFD is rejected.

AC$DFT requires Protect and List access for the parent of the object, or on the
object itself if it is a directory. Use access is required at each intermediate
subdirectory level. If the object is a password directory, Owner access is required
if Protect access is not available on the parent.

For more information on manipulating access control lists, refer to the PRIMOS
User's Guide.

Second Edition 2-7

AC$DFT

Subroutines Reference II: File System

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

2-8 Second Edition

r
r AC$LIK

AC$LIK

Access Control

AC$LIK sets an object's ACL like that of another object.

Usage

DCL AC$LIK ENTRY (CHAR(128)VAR, CHAR(128)VAR,
FIXED BIN);

CALL AC$LIK (target_name, reference_name, code);

Parameters

target_name
INPUT. Pathname or objectname of the object to be protected.

reference_name
INPUT. Pathname or objectname of the object from which to take the ACL.

code
OUTPUT. Standard error code.

Discussion

Both targetjname and reference name must refer to existing file system objects.
A new specific ACL is created for the target, giving it the same protection as the
reference, regardless of how the target and reference are currently protected. If
the target is a password directory and its parent is an ACL directory, the target is
converted to an ACL directory. The reverse is not true; that is, the AC$LIK call
cannot be used to convert an ACL-protected object to a password-protected
object.

target name or reference_name (or both) can be a simple objectname if the
object referred to is in the current directory.

AC$LIK requires Protect and List access to the target's parent, or Protect access
to target name. It also requires List access to the parent of reference name.

For more information on manipulating access control lists, refer to the PRIMOS
User's Guide.

Second Edition 2-9

AC$LIK

Subroutines Reference II: File System

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

2-10 Second Edition

AC$LST

Access Control

AC$LST

AC$LST obtains the contents of an object's ACL.

Usage

DCL AC$LST ENTRY (CHAR(128)VAR, PTR, FIXED BIN,
CHAR(128)VAR, FIXED BIN, FIXED BIN);

CALL AC$LST (name, acljptr, max_entries, acl_name, acljype, code);

Parameters

name
INPUT. Pathname or objectname of the object for which ACL contents are
desired.

acljjtr
INPUT -> OUTPUT. Pointer to user's ACL structure, described below.

max_entries
INPUT. Maximum number of entries that the user's defined structure can
contain.

acl_name
OUTPUT. Name of the ACL protecting the object. The name is determined
by the algorithm described in the Discussion section below.

acljype
OUTPUT. Type of ACL protecting the object. Possible values are

0 Object protected by specific ACL.

1 Object protected by access category.

2 Default access provided by specific ACL for some parent
directory.

3 Default access provided by an access category that is not in
the directory that contains the object.

4 Object specified in name is an access category.

code

OUTPUT. Standard error code.

Second Edition 2-11

AC$LST

Subroutines Reference II: File System

Discussion

AC$LST requires List access to the parent of the object.

If the object referred to in name is in the current directory, a simple objectname
can be used in place of a pathname.

If name is null, the contents of the ACL for the current directory are returned. If
max_entries is 0, only aclname and acltype are returned. The aclname
returned (which is a full pathname) is determined by the following algorithm:

acl_name (object) = If (object category_j3rotected)
then category name
else if (object specific_protected)

then object name
else acl_name(parent(object))

acl_ptr points to a structure having the following format:

del 1 acl,
2 version FIXED BIN, /* Must be 2. */
2 entry_count FIXED BIN,
2 e n t r i e s (e n t r y _ c o u n t) CHAR(80) VAR;

version
INPUT. The calling program must specify the value 2 for version.

entryjeount
OUTPUT. Number of entries returned to entries.

entries(entry_count)
OUTPUT. Each entry in entries is a string of the form <user_ID:access>. A
valid entry might be HOLMES :LUR. The user ID can also be a group name
such as .PRIVATE_EYES. Group names start with a period.

For more information on manipulating access control lists, refer to the PRIMOS
User's Guide.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

2-12 Second Edition

AC$RVT

Access Control

AC$RVT

AC$RVT converts an object from ACL protection to password protection.

Usage

DCL AC$RVT ENTRY (FIXED BIN);

CALL AC$RVT (code);

Parameters

code
OUTPUT. Standard error code. Possible values are

Keyword Meaning

E$NRIT Protect access is not available.

E$NINF List access is not available.

E$CATF The directory contains one or more access categories.

E$ADRF The directory contains one or more ACL subdirectories.

E$WTPR The disk is write-protected.

Discussion

AC$RVT converts the current directory to a password directory. The directory
must not contain any access categories or ACL subdirectories; if it does, the call
is rejected.

Protect access is required on the current directory. The SPAS$$ call can be used
to set owner and nonowner passwords on the converted directory to other than
their defaults of spaces and nulls, respectively.

AC$RVT is provided for compatibility with systems that still use password
protection. The use of password protection is discouraged in new programming.
Information on the conversion of password directories to ACL directories is
given in the PRIMOS User's Guide.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition 2-13

AC$SET

Subroutines Reference II: File System

AC$SET

AC$SET sets a specific ACL on an object.

Usage

DCL AC$SET ENTRY (FIXED BIN, CHAR(128)VAR, PTR,
FIXED BIN);

CALL AC$SET (key, name, acljptr, code);

Parameters

key
INPUT. Indicates caller's intentions. Possible values are

Keyword Meaning

0 Create a new ACL if one does not exist; replace it if it
already exists.

K$CREA Create a new ACL if one does not exist; return an error if
one already exists.

K$REP Replace the contents of an existing ACL; return an error if
one does not exist.

name
INPUT. Pathname of the file system object to be protected.

acljptr

INPUT. Pointer to an ACL structure declared in the user program and
formatted as for AC$LST, described earlier.

code
OUTPUT. Standard error code.

Discussion

The AC$SET call provides user programs with a method of creating and
replacing the ACL of an access category, a file, a file directory, or a segment
directory. If the object referred to in name is in the current directory, a simple
objectname can be used in place of a pathname.

2-14 Second Edition

AC$SET

Access Control

The structure in which the access control information is defined is declared in
the user program in the format described for the AC$LST call earlier in this
chapter. In the absence of an entry in the structure for the special user group
$REST, the AC$SET call automatically provides a $REST:NONE entry in the
resulting ACL.

AC$SET requires Protect and List access to the parent of the object, or Protect
access to the object itself.

The action taken by AC$SET is determined by the type of the object named in
the call and by the key, as follows:

• The named object is an access category. If the key K$CREA, an error is
returned. Otherwise, the category's existing ACL is replaced with the new
one pointed to by acl_ptr.

• The named object is a file, a file directory, or a segment directory. If the
file is protected by a specific ACL and the key is K$CREA, an error is
returned. Otherwise, a new specific ACL is created and the object is
pointed to it. Any existing specific ACL is deleted. If the object is a
password directory and its parent is an ACL directory, it is converted to an
ACL directory.

• The named object does not exist. If the key is not K$REP, a new access
category is created with the given name and ACL. Otherwise, an error is
returned.

To add a file system object to an existing access category, refer to the AC$CAT
subroutine, described earlier in this chapter.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition 2-15

CALAC$

Subroutines Reference II: File System

CALAC$

Determines whether an object is accessible for a given action.

Usage

DCL CALAC$ ENTRY (CHAR(128)VAR, PTR, CHAR(47)VAR,
CHAR(47)VAR, FIXED BIN)
RETURNS (BIT(l));

havejaccess = CALAC$ {name, idjptr, accjneeded, acc_gotten, code);

Parameters

name
INPUT. Pathname of the file system object to check.

id_ptr
INPUT. Pointer to the user ID structure.

acc_needed
INPUT. A list of accesses required (ignored if object is password-protected).

acc_gotten
OUTPUT. The list of accesses available.

code
OUTPUT. Standard error code.

havejaccess
RETURNED VALUE. True if accjieeded is a subset of acc_gotten, or if the
object is password-protected (in which case accjieeded is ignored).

Discussion

The user ID structure pointed to by id_ptr is the same as that for GETID$,
described later in this chapter. If idjptr is null (the usual case), the current user's
ID and groups are used.

The accneeded and accgotten strings are in ASCII format. They are strings
consisting of one or more of the letters P, D, A, L, U, R, and W, or the special
modes ALL and NONE.

2-16 Second Edition

CALAC$

Access Control

If the object referred to in name is in the current directory, a simple objectname
can be used in place of a pathname. If name is null, the rights for the current
directory are returned.

If CALAC$ determines that the object is password-protected, password rights
are returned in acc_gotten. If the CALAC$ call is made on the current directory,
the string "Owner" is returned if the user has Owner rights, and "Non-owner" is
returned if the user is attached with Nonowner rights. For files, a string of the
form

<owner_rights> <non_owner_rights>

is returned, where the rights strings are either a combination of the characters R
(read), W (write), and D (delete), or the special string NIL (no rights). For
password-protected objects the accjieeded string is ignored and have_access is
always set to TRUE.

CALAC$ requires List access to the parent of the object.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition 2-17

CAT$DL

Subroutines Reference II: File System

CAT$DL

CAT$DL deletes an access category.

Usage

DCL CAT$DL ENTRY (CHAR(128)VAR, FIXED BIN);

CALL CAT$DL (name, code);

Parameters

name
INPUT. Pathname of the access category to be deleted.

code
OUTPUT. Standard error code.

Discussion

The object specified in name must exist and must be an access category. If it is
in the current directory, a simple objectname can be used in place of a pathname.

When an access category is deleted, any objects that were protected by it revert
to default access (the access of their parent directory).

A specific ACL cannot be explicitly deleted. It is deleted by PRIMOS when the
object it protects is

• Deleted

• Put into an access category

• Given default protection

An access category that protects the MFD cannot be deleted.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

2-18 Second Edition

r
f GETID$

GETID$

Access Control

Obtains the user ID and the groups to which it belongs.

Usage

DCL GETID$ ENTRY (PTR, FIXED BIN, FIXED BIN);

CALL GETID$ (idjptr, max_groups, code);

Parameters

idjptr

INPUT -> OUTPUT. Pointer to the fullJd structure, described in the next
section.

max_groups
INPUT. Maximum number of groups that the caller's/w//_W structure can
contain.

code
OUTPUT. Standard error code. Possible values are

E$BPAR id_ptr is null or maxgroups is less than zero.

E$BVER Invalid version number.

Discussion

The structure pointed to by idjptr has the following format:

DCL 1 full_id,
2 version FIXED BIN,
2 user_id CHAR(32) VAR,
2 g r o u p _ c o u n t FIXED BIN,
2 g r o u p s (g r o u p c o u n t) CHAR(32) VAR;

version
Version number of the structure. This must be supplied by the caller and must
be 1 or 2 in Rev. 20.2.

Second Edition 2-19

GETID$

Subroutines Reference II: File System

userjd
The ID of the calling user.

groupjcount
Number of groups returned to the caller. This is always the lesser of the
number specified in max_groups and the number of groups of which the user
is a member. In Rev. 20.2, a user can be a member of up to 32 groups. If
maxgroups is 0, this field is not returned.

groups
The list of groups of which the user is a member.

Loading and Linking information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

2-20 Second Edition

GPAS$$

GPAS$$

Access Control

GPAS$$ obtains the passwords of a subdirectory of the current directory.

Usage

DCL GPAS$$ ENTRY (CHAR(32), FIXED BIN, CHAR(6), CHAR(6),
FIXED BIN);

CALL GPAS$$ (dirnam, namlen, opass, npass, code);

Parameters

dirnam
INPUT. Name of the directory whose passwords are to be returned.

namlen
INPUT. Length in characters (1-32) of dirnam.

opass
OUTPUT. Owner password for dirnam.

npass
OUTPUT. Nonowner password for dirnam.

code
OUTPUT. Standard error code.

Discussion

GPAS$$ searches for dirnam in the current directory; therefore, only a simple
objectname can be specified in dirnam.

GPAS$$ requires Protect access to the current directory.

The following example reads both passwords of SUBDIR:

de l gpas$$ en t ry (char (32) , f ixed b in , char(6) c h a r (6) ,
f ixed b i n) ;

de l mypass c h a r (6) ; / * owner password */
de l yourpass c h a r (6) ; / * nonowner password */
c a l l gpas$$ (' subufd ' , 6, mypass, yourpass , code) ;

Second Edition 2-21

GPAS$$

Subroutines Reference II: File System

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

2-22 Second Edition

ISACL$

ISACL$

Access Control

ISACL$ determines whether an object is ACL-protected.

Usage

DCL ISACL$ ENTRY (FIXED BIN, FIXED BIN) RETURNS (BIT(l));

is_acl_dir = ISACL$ (unit, code);

Parameters

unit
INPUT. File unit to check, unit is either a file unit number or one of the
following:

-1

-2

-3

code
OUTPUT.

Current directory

Home directory

Initial directory

Standard error code.

is_acl_dir
RETURNED VALUE. TRUE if directory specified in unit is an ACL
directory; otherwise returns FALSE.

Discussion

For purposes of compatibility, ACL directories and password directories have
the same type (as visible to users — internally they are different). Therefore,
some means of distinguishing between the two is needed. ISACL$ is a function
call that looks at the directory open on unit and returns TRUE if the directory is
an ACL directory.

Information on ACL and password directories can be found in the PRIMOS
User's Guide.

Loading and Linking information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: No special action.

Second Edition 2-23

PA$DEL

Subroutines Reference II: File System

PA$DEL

PA$DEL removes an object's priority access.

Usage

DCL PA$DEL ENTRY (CHAR(32)VAR, FIXED BIN);

CALL PA$DEL (partition_name, code);

Parameters

partition_name
INPUT. Name of the partition from which to remove a priority ACL.

code
OUTPUT. Standard error code.

Discussion

Use of the PA$DEL subroutine is restricted to User 1 (the supervisor terminal)
and the System Administrator.

Refer to the PA$SET subroutine, later in this chapter, and to the System
Administrator's Guide, Volume 111: System Access and Security for a discussion
of priority access and when and why it is used.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

2-24 Second Edition

PA$LST

Access Control

PA$LST

Obtains the contents of an object's priority ACL.

Usage

DCL PA$LST ENTRY (CHAR(128)VAR, PTR, FIXED BIN,
FIXED BIN);

CALL PA$LST (name, acl_ptr, max_entri.es, code);

Parameters

name
INPUT. Pathname or objectname of any object on the partition whose priority
ACL is to be read.

acl_ptr
INPUT -> OUTPUT. Pointer to ACL structure (described under AC$LST,
earlier in this chapter).

max_entries
INPUT. Maximum number of entries the caller's structure can contain.

code
OUTPUT. Standard error code.

Discussion

The PA$LST call returns the same kind of information as the AC$LST call does;
PA$LST, however, limits its returned information to that contained in a priority
access control list previously created by a PA$SET call. The structure contain
ing the returned information is declared in the user program in the same format
as for the AC$LST call, described earlier in this chapter.

Unlike the PA$DEL and PA$SET calls, use of the PA$LST call is not restricted
to User 1 or the System Administrator, it can be called by any user who satisfies
access control requirements.

Normally, List access to the partition is required in order to determine the logical
device number, and, through that number, to get the priority ACL. Since a
priority ACL can be defined to disallow all access to a partition, PA$LST can be
called with only a partition name (in angle brackets). In that case, it merely
looks up the partition in the logical disk table and no access is required.

Second Edition 2-25

http://max_entri.es

PA$LST

Subroutines Reference II: File System

Refer to the PA$SET subroutine, later in this chapter, and to the System
Administrator's Guide, Volume III: System Access and Security for a discussion
of priority access and when and why it is used.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

2-26 Second Edition

PA$SET

PA$SET

Access Control

PA$SET sets priority access on an object.

Usage

DCL PA$SET ENTRY (CHAR(32)VAR, PTR, FIXED BIN);

CALL PA$SET (partition_name, acljptr, code);

Parameters

partition _name
INPUT. Name of the partition to be protected.

acl_ptr
INPUT. Pointer to ACL structure.

code
OUTPUT. Standard error code.

Discussion

It is at times necessary for User 1 (the supervisor terminal) or the System
Administrator to take exclusive control of a partition for the purpose of
troubleshooting, taking system backups, or other procedures that cannot tolerate
interference from other users. Under these circumstances, priority access can be
set on the partition involved. Priority access does not disturb existing ACLs; it
introduces, while it is in effect, a level of protection that takes precedence over
an existing ACL. When this precedence is no longer required, priority access is
removed using the PA$DEL call described earlier.

acljptr points to an ACL structure as described for the AC$LST subroutine
earlier in this chapter. Any existing priority ACL on the specified partition is
replaced by the new one. Unlike the action of the AC$SET subroutine, if no
$REST entry is in the ACL passed to PA$SET, no $REST:NONE entry is
supplied.

Refer to the System Administrator's Guide, Volume HI: System Access and
Security for more information on priority access and how to use it, and to the
PRIMOS User's Guide for more information on access control.

Second Edition 2-27

PA$SET

Subroutines Reference II: File System

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

2-28 Second Edition

SPAS$$

SPAS$$

Access Control

SPAS$$ sets the owner and nonowner passwords on an object.

Usage

DCL SPAS$$ ENTRY (CHAR(6), CHAR(6), FIXED BIN);

CALL SPAS$$ (owner_pw, nonownerjpw, code);

Parameters

owner_pw
INPUT. Password to set as the owner password.

nono>vner_pw
INPUT. Password to set as the nonowner password.

code
OUTPUT. Standard error code.

Discussion

SPAS$$ requires Owner rights to the current directory. Passwords intended to be
typed from the terminal should not start with a number, nor should they contain
blanks or the characters = + ! , @ { } [] () A < o r > . Passwords should not
contain lowercase characters, but can contain any other characters including
control characters.

Passwords that are intended to be accessed only through programs can have any
bit pattern.

If the owner password supplied in the call is null, the owner password on the
directory is set to spaces. If the nonowner password supplied in the call is null,
the nonowner password on the directory is set to null (all 0 bits).

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition 2-29

Attaching

3

Attaching is the mechanism by which a user's process becomes connected to a
file directory upon which (or subordinate to which) some operation is to be done.
This is known as setting the current attach point.

Setting the current attach point always defines the user's current directory
(sometimes known as the cache directory). In some cases the home directory
can also be defined in the same call by the appropriate use of a key argument.
Some routines temporarily alter the current attach point during their execution;
they then reset the current attach point to be the same as the home attach point.
See the PR/MOS User's Guide for an introductory discussion of attach points.

Note With the ATS, ATSABS, ATSLDEV, and ATSOR subroutines, it is possible to set either
the current attach point or both the current and home attach points. Care should be taken
to select the correct key value for these subroutines to ensure that your attach point after
the completion of the subroutine is correct.

This chapter describes a set of system subroutines that can be used to set the
current attach point to specified directories anywhere in that portion of the file
hierarchy that is visible to the calling system. Programmers who need further
information about these subroutines should see the Advanced Programmer's
Guide II: File System.

With the introduction of the Rev. 23.0 file system and the concept of the
common file system name space, it is important that you set up your search rules
so that you can more quickly access those disks that you use most frequently.
Refer to the Advanced Programmer's Guide II: File System for a detailed
description of the Rev. 23.0 file system.

The following subroutines, their declarations, and their calling sequences are
described in this chapter:

AT$ Set the attach point to a directory specified by pathname.

ATSABS Set the attach point to a specified top-level directory and
partition.

AT$ANY Set the attach point to a specified top-level directory on any
partition.

AT$HOM Set the attach point to the home directory.

Second Edition 3-1

Subroutines Reference II: File System

AT$LDEV Set the attach point to a specified top-level directory on a
partition identified by logical disk number.

AT$OR Set the attach point to the login directory.

AT$REL Set the attach point to a directory subordinate to the current

directory.

AT$ROOT Set the attach point to the root directory.

ATCH$$ Set the attach point to a specified directory and, optionaUy,
make it the home directory.

GTROB$ Determine whether current attach point exists on a robust
partition.

3-2 Second Edition

AT$

AT$

Attaching

AT$ sets the attach point to a directory specified by pathname.

Usage

DCL AT$ ENTRY (FIXED BIN, CHAR(128) VAR, FIXED BIN);

CALL AT$ (key, name, code);

Parameters

key

INPUT. Indicates whether the home as well as the current attach point should
be set. Possible values are

K$SETC Set current attach point only.

K$SETH Set home and current attach points.

Note It is possible to set either the current attach point or both the current and home attach
points. Care should be taken to select the correct key value to ensure that your program
returns to the desired attach point after the completion of the subroutine.

name
INPUT. Pathname or objectname of the directory to be attached to.

code

OUTPUT. Standard error code. Possible values are

E$BKEY An invalid key value was passed.

E$ITRE The treename was invalid.

E$FNTF Some part of the pathname does not exist.

E$NRIT Use rights were unavailable at some level.

E$NINF Some node in the tree could not be accessed, and that
node's parent was missing List access.

E$NATT A relative attach was attempted, but the current attach
point was invalid.

Second Edition 3-3

AT$

Subroutines Reference II: File System

Discussion

The AT$ subroutine parses a pathname and passes the call to the AT$ABS,
ATANY, ATHOM, AT$ROOT, and AT$REL subroutines (described later in
this chapter) to perform the actual attaching.

AT$ allows the user to do a pathname attach in one call. The subroutine to which
the call is passed by AT$ depends on the form of the pathname. The several
forms and their corresponding implementation are as follows:

Form Result

< Passed to AT$ROOT to attach to the root directory.

<*> Passed to AT$ABS to attach to the current partition's MFD
(the MFD containing the home directory in effect at the time
of the AT$ call). The < in this special syntax does not indicate
the root.

<dir>...
<dir Passed to AT$ROOT to attach to the specified root-level

directory, followed by calls to AT$REL to attach to
directories following the <dir> portion of the pathname.

*>... Passed to AT$HOM to attach to the home directory, followed
by calls to AT$REL to attach downward.

dir Passed to AT$ANY to attach to a top-level directory, that is, a
directory immediately subordinate to a partition's MFD.

dir>... Passed to AT$ANY to attach to an absolute pathname, the
first element being a top-level directory.

(null) A null pathname has the same effect as using the AT$HOM
call, described later in this chapter.

Note For many commands, such as COPY or SLIST, as well as for many subroutine calls, a
simple objectname refers to an object in the current directory. When dealing with the
AT$ subroutine, however, always keep in mind that a pathname whose first (or only)
element is an objectname (is not an asterisk or a partition name enclosed in angle
brackets) refers to a top-level directory called objectname, not a subdirectory in the
current directory.

At Rev. 23.0, the concept of the root directory is introduced. To avoid any
confusion regarding the hierarchy of directory pathnames, keep in mind that a
top-level directory is any directory immediately subordinate to the MFD. The
meaning of the term top-level has not changed in a functional sense. That is, the
AT$ and AT$ANY subroutines function as they did before Rev. 23.0.

Be aware that with lower-mounted directories, they may no longer be considered
top-level. See the discussion at AT$ABS. Refer also to the discussion on the

3-4 Second Edition

AT$

Attaching

Rev. 23.0 common file system name space in the Advanced Programmer's Guide
II: File System. If you have directories that are located in lower-mounted
partitions, you may want to consider placing the mount-point pathname, plus the
name of the lower-mounted partition, in the system search rules (ATTACH$).

Use access is required to each directory appearing in a pathname, including the
MFD.

If name is a password directory with both an owner and a nonowner password,
and the supplied password matches neither, two things happen: first, there is a
five-second delay to discourage machine-aided breaking of passwords; second,
the B AD_PASSWORD$ condition is signalled, but no error code is returned.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 3-5

AT$ABS

Subroutines Reference II: File System

AT$ABS

AT$ABS sets the attach point to a specified top-level directory and partition.

Usage

DCL AT$ABS ENTRY (FIXED BIN, CHAR(32)VAR, CHAR(39)VAR,
FIXED BIN);

CALL AT$ABS (key, partjiame, dir_name, code);

Parameters

key
INPUT. Specifies which attach points to change. Possible values are

Keyword Value Meaning

K$SETC 0 Set current attach point only.

K$SETH 1 Set current and home attach
points.

Note It is possible to set either the current attach point or both the current and home attach
points. Care should be taken to select the correct key value to ensure that your program
returns to the desired attach point after the completion of the subroutine.

partjiame
INPUT. Name of the disk partition on which the directory resides.

dir_name

INPUT. Name of the directory to attach to. To specify a password, append it
to dirjwme with a single space separating dirname and the password.

code

OUTPUT. Standard error code. If code is 0, the operation was successful.
Otherwise, code is always positive. Error codes specific to this operation may
have the following values.

3-6 Second Edition

AT$ABS

Attaching

E$BPAR

E$NATT

E$FNTF 15

E$BNAM 17

Bad parameter. The length of the directory name as
passed by the calling program is a negative number or is
greater than 39 (including an optional directory
password).

No directory attached to. This error can occur only when
the partition name is * and the partition on which the
current directory resides is removed from the system, as
when a disk is shut down. Use one of the subroutines
described in this chapter to reestablish a current attach
point.

Not found. The specified partition does not exist, or the
specified directory does not exist on that partition.

Illegal name. The partition name must be between 0 and
32 characters in length. The directory name must also be
between 0 and 32 characters in length (inclusive),
optionally followed by a single space and a password
from 1 to 6 characters long (inclusive).

Discussion

AT$ABS uses a partition name to specify the partition containing the directory to
be attached to. To attach via a logical disk number, use AT$LDEV, described
later in this chapter.

Ifpartname is null, logical device 0 (the command device) is assumed. If
partjiame is *, the partition containing the home directory at the time of the
AT$ABS call is searched. If dirjiame is null, the MFD is assumed.

A null partition name specifies logical disk 0 (the command device). The
partition name must be the name of the root entry. At Rev. 23.0, the partition
name is any valid directory name up to 32 characters long.

A partition name of * specifies the MFD mount point of the current attach point.
If the current attach point is the root directory, * refers to the root directory itself.

Example: The following PL/I statement sets the home and current attach
points to the directory named ORANGE on the partition named RHYMES:

a t $ a b s (k $ s e t h , 'RHYMES', 'ORANGE' ,code) ;

Before Rev. 23.0, AT$ABS allowed you to set the attach point to a specified
top-level directory on a given partition. At Rev. 23.0, however, a disk partition
may be logically mounted anywhere on the file system tree, not just directly

Second Edition 3-7

AT$ABS

Subroutines Reference II: File System

below the root. If the desired directory is under a disk partition which is itself a
lower-mounted directory, then AT$ABS will not locate the directory. In this
case, use AT$ instead, as in the following statement.

at$(k$seth,'<RHYMES>ORANGE', code);

AT$ABS may not work as expected if you are using logical mounts. For
information on logical mounts, refere to the System Administrator's Guide,
Volume I: System Configuration.

You may specify the partition argument by using any of the following:

• The name of the partition

• The name of the partition on which the current directory resides

• The name of the partition corresponding to logical disk 0

• The name of the partition corresponding to a particular logical disk number

When your program calls AT$ABS, it provides

• A key that specifies whether the home attach point is to be set

• The identity of the directory's partition, in any of the forms listed above

• The name of the directory itself

The AT$ABS subroutine attempts to set the current attach point to the specified
directory on the specified partition, and returns a code indicating whether the
operation was successful. If the operation fails, no changes are made to the
attach points. If the operation succeeds, the home attach point is also set to the
current attach point if specified by the key.

Loading and Linking information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

3-8 Second Edition

r
* AT$ANY

AT$ANY

Attaching

AT$ANY sets the attach point to a specified top-level directory on any partition.

Usage

DCL AT$ANY ENTRY (FIXED BIN, CHAR(39)VAR, FIXED BIN);

CALL AT$ANY (key, dir_name, code);

Parameters

key
INPUT. Specifies which attach points to change. Possible values are

K$SETC Set only current attach point.

K$SETH Set current and home attach points.

Note It is possible to set either the current attach point or both the current and home attach
points. Care should be taken to select the correct key value to ensure that your program
returns to the desired attach point after the completion of the subroutine.

dir_name
INPUT. Name of the directory, including the password (if any), separated
from the directory name by a space.

code
OUTPUT. Standard error code. The following error codes are specific to this
subroutine:

Keyword Value Meaning

E$BPAR 6 Bad parameter. The length of the directory name as
passed by the calling program is a negative number
or is greater than 39 (including an optional directory
password).

E$BNAM 17 Illegal name. The syntax of the directory name as
supplied by the calling program is not correct. The
directory name must be between 0 and 32 characters
in length, optionally followed by a single space and
a password. See the PRIMOS User's Guide for a
description of the legal syntax for objectnames.

Second Edition 3-9

AT$ANY

Subroutines Reference II: File System

Keyword Value Meaning

E$NFAS 189 Top-level directory not found or inaccessible. The
specified directory could not be found, or resides on
a disk partition that cannot be accessed by the user.

Discussion

Before Rev. 23.0, AT$ANY was used to attach to a top-level directory on any
disk partition. At Rev. 23.0, however, AT$ANY functions differently to
accommodate the singly-rooted file system hierarchy and the Global Mount
Table.

At Rev. 23.0, AT$ANY scans the entire root structure for the desired directory
because a logical disk may be grafted at any point on the root hierarchy; the term
top-level is any directory immediately subordinate to the MFD. The meaning of
the term has not changed in a functional sense at Rev. 23.0. That is, the AT$ and
AT$ANY subroutines function as they did before Rev. 23.0.

AT$ANY uses the ATTACH$ search rule to attach to the specified directory. Use
the LIST_MOUNTS command or the NAM$L_GMT subroutine to determine
the logical disk order for your system (or use the STATUS DISKS command if
your system is not part of a common file system name space). For more
information on the ATTACH$ search rule, see the Advanced Programmer's
Guide II: File System.

The AT$ANY subroutine provides the following:

• A key that specifies whether the home attach point is to be set

• The name of the directory

The AT$ANY subroutine attempts to set the current attach point to the specified
directory on the first partition it finds having such a directory. It returns a code
indicating whether the operation was successful. If the operation fails, no
changes are made to the attach points. If the operation succeeds, the home attach
point is also set to the current attach point, if specified by the key.

Loading and Linking information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

3-10 Second Edition

AT$HOM

Attaching

AT$HOM

AT$HOM sets the attach point to the home directory.

Usage

DCL AT$HOM ENTRY (FIXED BIN);

CALL AT$HOM (code);

Parameters

code
OUTPUT. Standard error code. The following error codes are specific to this
subroutine:

Keyword Value Meaning

E$ATT 7 No top-level directory attached. This error usually
occurs only when the disk on which the home direc
tory resides has been removed from the system, as
when a disk is shut down. Once a disk has been shut
down, all home directories residing on that disk for all
currently logged-in users are lost. These home
directories can be reestablished by the users only by
issuing an ATTACH command after the disk is started
up again.

E$SHDN 121 The disk has been shut down. The disk on which the
home directory resides has been shut down (using the
SHUTDN command as described in the Operator's
Guide to System Commands). The disk is no longer
available for use, until the system operator uses the
ADDISK command to add the disk again. After this is
done, the user must issue the ATTACH command
again to reestablish his or her home directory.

Discussion

The AT$HOM call returns the current attach point to the home directory. It can
be used after any attach operation that attaches away from the home directory
(that is, after an attach call is made in which the K$SETH key option was
available but not used). It functions in the same way as the ATTACH command
with no argument (described in the PRIMOS Commands Reference Guide).

Second Edition 3-11

AT$HOM

Subroutines Reference II: File System

Loading and Linking Information
V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

3-12 Second Edition

AT$LDEV

AT$LDEV

Attaching

AT$LDEV sets the attach point to a specified top-level directory on a partition
identified by logical disk number.

Usage

DCL AT$LDEV ENTRY (FIXED BIN, FIXED BIN, CHAR(39) VAR,
CHAR(32) VAR, FIXED BIN);

CALL AT$LDEV (key, Idev, dirjmme, partjwme, code);

Parameters

key
INPUT. Specifies which attach points to change. Possible values are

K$SETC Set only current attach point.

K$SETH Set current and home attach points.

Note It is possible to set either the current attach point or both the current and home attach
points. Care should be taken to select the correct key value to ensure that your program
returns to the desired attach point after the completion of the subroutine.

Idev
INPUT. Logical device number of the partition on which to look for the
top-level directory.

dirjmme
INPUT. Name of the top-level directory to attach to, including the password
(if any), separated from the directory name by a space. If null, the MFD is
assumed.

partjiame
OUTPUT. Name of the partition corresponding to Idev.

code
OUTPUT. Standard error code.

Second Edition 3-13

AT$LDEV

Subroutines Reference II: File System

Discussion

The AT$LDEV subroutine provides an alternative way to attach to a top-level
directory, using the logical disk number of the partition on which the directory
resides rather than the partition name used with the AT$ABS call. AT$LDEV
looks up the partition name corresponding to the supplied disk number, and
passes this name, along with the rest of the arguments in the AT$LDEV call, to
the AT$ABS subroutine through an internal call.

The key argument determines whether or not to set the attach point of the home
directory, as well as the current directory, to the top-level directory named in
dirname.

The Idev argument must be between 0 and the highest logical disk number in the
system's logical disk list. (Display the logical disk list by using the STATUS
DISK command.)

If dirname is a password directory and a password is included in the argument,
the user is attached to the directory with owner or nonowner rights, depending on
whether the owner password or the nonowner password was supplied. If the
password is not included, or is neither the owner nor the nonowner password, the
attachment is with nonowner rights. (The password, when supplied, is separated
from the directory name by a space.)

Loading and Linking information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

3-14 Second Edition

AT$OR

Attaching

AT$OR

AT$OR sets the attach point to the login directory.

Usage

DCL AT$OR ENTRY (FIXED BIN, FIXED BIN);

CALL AT$OR (key, code);

Parameters

key
INPUT. Specifies which attach points to change. Possible values are

K$SETC Set only current attach point.

K$SETH Set current and home attach points.

Note It is possible to set either the current attach point or both the current and home attach
points. Care should be taken to select the correct key value to ensure that your program
returns to the desired attach point after the completion of the subroutine.

code

OUTPUT. Standard error code. The following error codes are specific to this
subroutine:

Keyword

E$ATT

Value Meaning

No top-level directory attached. This error
usually occurs only when the disk on which the
home directory resides has been removed from the
system, as when a disk is shut down. Once a disk
has been shut down, all home directories residing
on that disk for all currently logged-in users are
lost. These home directories can be reestablished
by the users only by issuing an ATTACH
command after the disk is started up again.

Second Edition 3-15

AT$OR

Subroutines Reference II: File System

Keyword Value Meaning

E$SHDN 121 The disk has been shut down. The disk on which
the home directory resides has been shut down
(using the SHUTDN command as described in the
Operator's Guide to System Commands). The disk
is no longer available for use, until the system
operator uses the ADDISK command to add the
disk again. After this is done, the user must issue
the ATTACH command again to reestablish his or
her home directory.

Discussion

A user's process, when the user first logs in, is attached to the directory
designated by the System Administrator as that user's login, or origin, directory.
During a terminal session, the process will frequently attach to other directories
(sometimes, perhaps, unbeknownst to the caller). The AT$OR call is used to
reconnect the process to the origin directory; it functions in the same way as the
ORIGIN command (described in the PRIMOS Commands Reference Guide).

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

3-16 Second Edition

AT$REL

AT$REL

Attaching

AT$REL sets the attach point to a directory subordinate to the current directory.

Usage

DCL AT$REL ENTRY (FIXED BIN, CHAR(39)VAR, FIXED BIN);

CALL AT$REL (key, dir_name, code);

Parameters

key
INPUT. Specifies which attach points to change. Possible values are

K$SETC Set only current attach point.

K$SETH Set current and home attach points.

dirjmme
INPUT. Name of the directory, including the password, if any, separated from
the directory name by a space, dirname must exist in, and be immediately
subordinate to, the current directory.

code
OUTPUT. Standard error code.

Discussion

The AT$REL call enables the user program to attach to a subdirectory at the next
level down from the current directory. AT$REL must be called once for each
level the program needs to go down. Each call results in setting the current
attach point (and optionally the home attach point) one level lower.

The AT$ subroutine, described earlier in this chapter, can be used to attach,
through a single subroutine call, to a directory more than one level down from
the current directory; use the AT$ call with the following pathname form:

* > d i r name l > d i r name 2 > . . .

Second Edition 3-17

AT$REL

Subroutines Reference II: File System

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

3-18 Second Edition

AT$ROOT

AT$ROOT

Attaching

AT$ROOT attaches to the root directory by means of the calling program.

Usage

DCL AT$ROOT ENTRY (FIXED BIN, FIXED BIN);

CALL AT$ROOT (key, code);

Parameters

key
INPUT. Indicates whether to set only the current attach point or to set both
the current attach point and the home attach point. Possible values are

K$SETC Set current attach point only.

K$SETH Set both home and current attach points.

code
OUTPUT. Standard error code. Possible value is

E$BKEY An invalid key was passed.

Loading and Linking information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Effective for PRIMOS Rev. 23.0 and subsequent revisions.

Second Edition 3-19

ATCH$$

Subroutines Reference II: File System

ATCH$$

ATCH$$ sets the attach point to a specified directory and, optionally, makes it
the home directory.

This subroutine is considered obsolete, and its use in new programming is
discouraged. Use an appropriate AT$ call instead. Users maintaining existing
programs that call ATCH$ can refer to Appendix A for a complete description of
the subroutine.

3-20 Second Edition

GTROB$

Attaching

GTROB$

GTROB$ determines whether a specified file exists on a robust partition or on a
nonrobust partition.

Usage

DCL GTROB$ ENTRY (FIXED BIN(15), FIXED BIN(15))
RETURNS (BIT(l) ALIGNED);

robust_status = GTROB$ (/unit, code);

Parameters

funit
INPUT. The file unit number of the given file.

code
OUTPUT. The status code. Possible values are

E$OK Execution completed without error.

E$UNOP File unit specified in funit is closed.

E$BUNT A bad file unit number was specified in funit.

Network errors may be reported if the partition is remote and a network error
occurs.

robust_status
RETURNED VALUE. TRUE if the specified file exists on a robust partition,
or FALSE if it does not exist on a robust partition or if there is an error.
GTROB$ sets the robustjtatus value to TRUE by setting its most significant
bit to 1. It sets robuststatus to FALSE by returning a value of 0.

Discussion

GTROB$ determines whether a given file, as specified by its file unit number,
exists on a robust partition or on a nonrobust partition.

Loading and Linking Information

The dynamic link for GTROB$ is in PRIMOS.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

Second Edition 3-21

File and Directory Manipulation

4

This chapter describes the group of subroutines and functions used to perform
various actions on file system objects after a user's process has met access
control requirements and set its attach point to the appropriate place in the file
system.

Subroutines are provided to perform the general categories of actions listed
below:

• Creating and deleting file system objects

• Obtaining information about disks in use and their locations, and about
directories, files, and their attributes

• Opening named files, file directories, and segment directories

• Opening numbered segment directory entries

• Reading, writing, positioning, and checking the existence of file system
objects

• Extending and truncating CAM files; retrieving extent maps; setting CAM
files' allocation size values

• Closing file system objects by name or file unit number

• Manipulating names, suffixes, attributes, read/write modes, and directory
quotas

The following subroutines are described in this chapter. See Chapter 7 of this
volume for descriptions of OPSR$ and OPSRS$, which use search rules to locate
and open files.

APSFX$ Append a specified suffix to a pathname.

CF$EXT Extend or truncate a CAM file.

CF$REM Retrieve a CAM file's extent map from disk.

CF$SME Set a CAM file's allocation size value.

CH$MOD Change the open mode of an open file.

CL$FNR Close a file by name and indicate closed units.

Second Edition 4-1

Subroutines Reference II: File System

CLO$FN

CLO$FU

CNAM$$

CREA$$

CREPW$

DIR$CR

DIR$LS

DIR$RD

DIR$SE

ENT$RD

EQUALS

EXTR$A

FIL$DL

FINFO$

FNCHK$

FORCEW

GPATH$

ISREM$

LDISK$

LUDSK$

NAM$AD_PORTAL

NAM$L_GMT

NAM$RM_PORTAL

Close a file system object by pathname.

Close a file system object by file unit number.

Change the name of an object in the current directory.

Create a new subdirectory in the current directory.

Create a new password directory.

Create a new directory.

Search for specified types of entries in directory open
on file unit.

Read sequentially entries of directory open on file
unit.

Return entries meeting caller-specified selection
criteria in a directory open on a file unit.

Return contents of entry in directory open on file
unit.

Generate a filename based on another name.

Return file system object's entryname and parent
directory pathname.

Delete a file identified by a pathname.

Return information about a specified file unit.

Verify a supplied string as a valid filename.

Force PRIMOS to write modified records to disk.

Return pathname of specified unit, attach point or
segment.

Determine whether an open file system object is local
or remote.

Return information on the system's list of logical
disks.

List the disks a given user is using.

Converts an existing directory entry into a portal by
mounting the defined portal over the directory.

Reads the contents of the Global Mount Table (GMT)
and lists both the currently mounted disk partitions
and the currently mounted portals which can be
accessed by the calling program.

Deletes a portal entry in the specified directory
pathname.

- \

4-2 Second Edition

File and Directory Manipulation

PAR$RV

PRWF$$

Q$READ

Q$SET

RDEN$$

RDLIN$

SATR$$

SGD$DL

SGD$EX

SGD$OP

SGDR$$

SIZES

SRCH$$

SRSFX$

TNCHK$

TSRC$$

UNITS$

WILD$

WTLIN$

Return a logical value indicating whether a specified
partition supports ACL protection and quotas.

Read, write, position, or truncate a file.

Return directory quota and disk record use
information.

Set a quota on a subdirectory in the current directory.

Position in or read from a directory.

Read a line of characters from an ASCII disk file.

Set or modify an object's attributes in its directory
entry.

Delete a segment directory entry.

Determine if a segment directory entry exists.

Open a segment directory entry.

Position in, read an entry in, or modify the size of a
segment directory.

Return the size of a file system entry.

Open, close, delete, change access, or verify the
existence of an object

Search for a file with a list of possible suffixes.

Verify a supplied string as a valid pathname.

Open a file anywhere in the PRIMOS file structure.

Return the minimum and maximum file unit numbers
currently in use by this user.

Return a logical value indicating whether a wildcard
name was matched.

Write a line of characters to a file in compressed
ASCII format.

Second Edition 4-3

APSFX$

Subroutines Reference II: File System

APSFX$

APSFX$ appends a specified suffix to a pathname.

Usage

DCL APSFX$ ENTRY (CHAR(128)VAR, CHAR(128)VAR,
CHAR(32)VAR, FIXED BIN);

CALL APSFX$ (in_pathname, out_pathname, suffix, code);

Parameters

in_pathname
INPUT. Pathname input to check for suffix (128 characters maximum).

out_pathname

OUTPUT. Pathname returned to caller with desired suffix appended (128
characters maximum).

suffix
INPUT. This is the suffix to be added to the pathname. It should include the
period, and be in capital letters, for example, .F77 (32 characters maximum).

code
OUTPUT. Standard error code. Possible values are

-1 Suffix already present, pathname remained unchanged.

E$OK Suffix appended successfully.

E$NMLG Pathname added to suffix is more than 128 characters or
filename added to suffix is longer than 32 characters.

Discussion

The APSFX$ subroutine is designed for use with the object-naming convention
that appends suffixes to an object name by means of a period, such as
MYPROG.CBL. (Refer to the PRIMOS User's Guide for a discussion of
suffixes.) The pathname is checked for the prior existence of the suffix to avoid
overwriting an existing object.

APSFX$ does not permanently change the name of the object; it changes only
the name returned in out_pathname. It is most often used after an SRSFX$ call.

4-4 Second Edition

APSFX$

File and Directory Manipulation

After SRSFX$ finds an object and determines its suffix, APSFX$ can be used to
add a suffix to the base name found in order to generate a name for a related file.

APSFX$ is often helpful because SRSFX$ returns two parts to a name —
the base name and a suffix. APSFX$ ensures that the name in out_pothname has
the proper suffix if one is required.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition 4-5

CH$MOD

Subroutines Reference II: File System

CH$MOD

CH$MOD changes the open mode of an open file.

Usage

DCL CH$MOD ENTRY (FIXED BIN, FIXED BIN, FIXED BIN);

CALL CH$MOD (key, unit, code);

Parameters

key
INPUT. Mode to be set. Possible values are

K$READ Read (input only) mode

K$WRIT Write (output only) mode

K$RDWR Read/write (input/output) mode

unit
INPUT. File unit number on which file whose mode is to be changed is open.

code
OUTPUT. Standard error code.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-6 Second Edition

CL$FNR

File and Directory Manipulation

CL$FNR

CL$FNR closes a file by name and return a bit string indicating closed units.

Usage

DCL CL$FNR ENTRY (CHAR(128) VAR,
1,2 FIXED BIN (15),

2 (*) BIT (16) ALIGNED,
FIXED BIN, FIXED BIN);

CALL CL$FNR (pathname, rtn_list, firstJllejunit, code);

Parameters

pathname
INPUT. Pathname of object to be closed.

rtnjist
OUTPUT. Bit string indicating file units closed, relative to first Jilejmit.

firstJUejinit
OUTPUT. Lowest file unit number closed by this call.

code
OUTPUT. Standard error code.

Discussion

The CL$FNR subroutine closes all of the open file units associated with the file
name specified in pathname. The bit string returned in rtnjist indicates the file
unit numbers closed relative to the number returned in firstJilejinit.

For example, if file units 31, 36, and 40 were open and associated with the file
named m pathname, then firstJilejmit returns 31, and the rtnjist returns the bit
string 1000010001. The first 1-bit represents file unit 31, the next 1-bit
represents file unit 36, and the final 1-bit file unit 40.

The intervening file unit numbers 32-35 and 37-39 were either not open or not
associated with pathname, and hence were not closed by this call.

The UNITS$ call, described later in this chapter, can be used to determine the
highest open unit number, and hence the size of rtnjist.

Second Edition 4-7

CL$FNR

Subroutines Reference II: File System

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-8 Second Edition

CLO$FN

CLO$FN

File and Directory Manipulation

CLO$FN closes a file system object by pathname.

Usage

DCL CLO$FN ENTRY (CHAR(128) VAR, FIXED BIN);

CALL CLO$FN (pathname, code);

Parameters

pathname
INPUT. Pathname of object to be closed.

code
OUTPUT. Standard error code.

Discussion

The CLO$FN call closes one or more file units associated with the object named
in pathname. Only file units opened by the calling user are closed. Unlike the
CL$FNR call described earlier in this chapter, the identities of the file units
closed are not returned.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 4-9

CLO$FU

Subroutines Reference II: File System

CLO$FU

CLO$FU closes a file system object by file unit number.

Usage

DCL CLO$FU ENTRY (FIXED BIN, FIXED BIN);

CALL CLO$FU (unit, code);

Parameters

unit
INPUT. File unit number to close.

code
OUTPUT. Standard error code.

Discussion

The CLO$FU call closes only the file unit specified in unit, regardless of how
many file units may be associated with the same object. That is, if the file
MYFILE is open on file units 31, 36, and 40, and a CLO$FU call is issued for
file unit 36, only the instance of MYFILE that is open on file unit 36 is closed.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-10 Second Edition

CNAM$$

File and Directory Manipulation

CNAM$$

CNAM$$ changes the name of an object in the current directory.

Usage

DCL CNAM$$ ENTRY (CHAR(32), FIXED BIN, CHAR(32),
FIXED BIN, FIXED BIN [, FIXED BIN]);

CALL CNAM$$ (oldnam, oldlen, newnam, newlen, code [, ok_open]);

Parameters

oldnam
INPUT. Name of the file to be changed.

oldlen
INPUT. Length in characters of oldnam.

newnam
INPUT. New name of the file.

newlen
INPUT. Length in characters of newnam.

code
OUTPUT. Standard error code.

okjopen
OPTIONAL INPUT. Permits name changing on an open file. Set to 1 to
enable this function, otherwise omit. Valid only when oldnam and newnam
are of equal length.

Discussion

The user must have Delete and Add access to the parent directory of the object to
change the object's name.

CNAM$$ does not change the dateAime last modified (DTM) or the date/time
last accessed (DTA) or any of the other attributes of the object. However, the
DTM and DTA of the directory in which the object resides are changed.
CNAM$$ causes the position of the object's name in its parent directory to

Second Edition 4-11

CNAM$$

Subroutines Reference II: File System

change with respect to those of other objects if the new name is longer than the
old name.

It is invalid to attempt to change the name of the MFD, BOOT, or BADSPT
objects. An E$NRIT error message is generated if this is attempted.

Ordinarily, changing the name of an object is done only while the object is
closed. However, it is possible, by means of the ok_open parameter, to change
an object's name while the file is open, provided the old name and the new name
are equal in length. If they are not, and the value of ok open is 1, an error is
returned.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

4-12 Second Edition

CREA$$

File and Directory Manipulation

CREA$$

CREA$$ creates a new subdirectory in the current directory.

This subroutine is considered obsolete, and its use in new programming is
discouraged. Use DIR$CR instead. Users maintaining existing programs that
call CREA$$ can refer to Appendix A for a complete description of the
subroutine.

Second Edition 4-13

CREPW$

Subroutines Reference II: File System

CREPW$

CREPW$ creates a new password directory.

This subroutine is considered obsolete, and its use in new programming is
discouraged. Use DIR$CR instead. Users maintaining existing programs that
call CREPW$ can refer to Appendix A for a complete description of the
subroutine.

4-14 Second Edition

DIR$CR

DIR$CR

File and Directory Manipulation

DIRCR creates a new directory.

Usage

DCL DIR$CR ENTRY (CHAR(128) VAR, POINTER, FIXED BIN(15));

CALL DIR$CR (pathname, attribute^pointer, code);

Parameters

pathname
INPUT. Pathname of the directory to be created.

attribute _pointer

INPUT. Pointer to a program-declared block of attributes to be given to the
new directory. The attribute structure is described below.

code
OUTPUT. Standard error code.

Discussion

The DIR$CR call replaces the obsolete subroutines CREA$$ and CREPW$.

DIR$CR allows you to create an ACL directory or a password directory
anywhere in the file system. The caller must have Add permission to the parent
directory.

If the pathname parameter is an entryname (that is, it contains no > characters),
the directory is created at the current attach point.

The structure pointed to by attribute_pointer is expected to have the following
declaration (all elements are input):

DCL 1 attributes,
2 version FIXED BIN(15),
2 dir_type FIXED BIN(15),
2 max_quota FIXED BIN(31),
2 access cat CHAR(32)VAR;

Second Edition 4-15

DIR$CR

Subroutines Reference II: File System

version
Structure version number. Currently must be 1.

dirjtype
Type of directory to create. Possible values are

K$SAME New directory has same type as the parent directory.

K$PWD New directory is a password directory. Owner and
nonowner passwords are set to their defaults of spaces and
nulls, respectively.

max_quota
Maximum quota for new directory. The disk must be a quota disk.

accessjcat
Entryname for an access category by which the new directory will be
protected (input). Not permitted if the parent directory is a
password-protected directory.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-16 Second Edition

DIR$LS

DIR$LS

File and Directory Manipulation

DIR$LS searches for specified types of entries in a directory open on a file unit.

Usage

DCL DIR$LS ENTRY (FIXED BIN, FIXED BIN, BIT(l), BIT(4), PTR,
FIXED BIN, PTR, FIXED BIN, FIXED BIN,
FIXED BIN, (4) FIXED BEN, FIXED BIN(31),
FIXED BIN(31), FIXED BIN);

CALL DIR$LS {dir_un.it, dirjype, initialize, desiredjypes, mld_ptr,
wildjcount, return_ptr, maxjentries, entry_size,
entjreturned, typejcounts, beforejiate, afterjdate, code);

Parameters

dirjunit
INPUT. Unit on which the directory to be searched is open.

dirjype
INPUT. Type of object open on dirunit. Possible values are

2 SAM segment directory

3 DAM segment directory

4 User directory

initialize
INPUT. If set, the directory is to be reset to the beginning; otherwise, it is
searched from the current position. This enables large directories to be dealt
with in more than one call, making a large buffer area in the calling program
unnecessary.

desiredjypes
INPUT. A bit-encoded field defining what types of directory entries the
caller wants to have returned. In the following table, if the bit is set the
specified type is returned:

'1000'b

'0100'b

'0010'b

'0001'b

Directories

Segment directories

Files

Access categories

If all bits are set, type is not used as a selection criterion.

Second Edition 4-17

http://%7Bdir_un.it

DIR$LS

Subroutines Reference II: File System

wild_ptr
INPUT. Pointer to list of wildcard names for which to search. The list is an
array of CHAR(32) varying strings; the wildcard names must be uppercase.
Wildcards are explained in the PRIMOS User's Guide.

wildjcount
INPUT. Number of names in list pointed to by wild_ptr. Ifwildcount is 0,
wildcards are not used as a selection criterion.

return_ptr
INPUT -> OUTPUT. Pointer to caller's return structure. The data structure
returned is declared in the program as described below.

maxjentries
INPUT. Maximum number of entries that caller's structure can contain.

entry_size
INPUT. Number of halfwords reserved for each directory entry in the caller's
structure. max_entries multiplied by entry_size defines the size of the caller's
structure in halfwords. In Rev. 20.2, the normal size of a returned directory
entry is 31 halfwords.

ent_returned
OUTPUT. Number of entries returned in the current call. This number is
always less than or equal to max entries.

type_counts
OUTPUT. Number of entries of each type returned. Counts are returned in
the order of files, segment directories, directories, access categories, the sum
of all giving the current total number of entries. At Rev. 20.2, they are reset to
zero when the initialize bit is set.

beforejdate
INPUT. Entries with date/time modified earlier than this date are selected.
The date is given in standard FS format, described below. If the value of
beforeJiate is 0, it is not used as a selection criterion.

afterjiate
INPUT. Entries with date/time modified later than this date are selected. The
date is given in standard FS format, described below. If the value of after date
is 0, it is not used as a selection criterion.

^ >

4-18 Second Edition

DIR$LS

File and Directory Manipulation

code
OUTPUT. Standard error code (output). Possible values are

E$BUNT dirunit specified an illegal unit number.

E$UNOP dirunit is not open.

E$EOF There are no more entries in the directory.

Discussion

DIR$LS is a general-purpose file directory scanner. It selects directory entries
by name (handling wildcards), type, and dateAime modified (DTM). It can also
be used to search segment directories.

The directory must have been previously opened on some unit with one of the
standard PRIMOS object-opening routines. List access is required to open
directories.

The directory is searched sequentially from its beginning (if the initialize bit was
set) or from the current position (if it was not). As each entry is read, it is
checked against all of the selection criteria. If the entry meets all the criteria, it is
copied into the caller's buffer. The search ends when there are no more entries in
the directory or the caller's buffer becomes full, whichever occurs first.

All entries in the directory are returned if wild_count, before date, and
after_date are 0, and desiredtypes is '1111 'b.

The structure of a returned directory entry is

DCL 1 dir_entry,
2 ecw,

3 type BIT(8),
3 length BIT(8),

2 entryname CHAR(32) VAR,
2 protection,

3 owner_rights,
4 spare BIT(5),
4 delete BIT(l),
4 write BIT(1),
4 read BIT(l),

3 delete_protect BIT(l),
3 non_owner_rights,

4 spare BIT(4),
4 delete BIT(l),
4 write BIT(l),
4 read BIT(l),

2 file_info,
3 long_rat_hdr BIT(l),
3 dumped BIT{1),
3 dos_mod BIT(l),

Second Edition 4-19

DIR$LS

Subroutines Reference II: File System

3 special BIT(l),
3 rwlock BIT(2),
3 spare BIT(2),
3 type BIT(8),

2 date_time_mod FIXED BIN(31),
2 non_default_acl BIT(l) ALIGNED,
2 logical_type FIXED BIN,
2 trunc BIT(l) ALIGNED,
2 date time backed up FIXED BIN(31);

ecw.type
Entry control word for the entry. Possible values are

2 Normal directory entry (file, directory, or segment
directory)

3 An access category

ecw.length

24 halfwords for PRIMOS revisions up to and including 19.2,27 halfwords
for revisions from 19.3,31 halfwords from Rev. 20.0, and 37 halfwords from
Rev. 22.0 onward.

entryname
Name of the entry, in uppercase. If a root directory has been designated as a
portal, with the NAM$AD_PORTAL subroutine, entryname refers to the
portal.

protection.owner_rights
The rights granted to a user when attached to the containing directory, having
given the owner password.

protection.deletejprotect
The setting of the ACL delete-protect switch. If this bit is on, the file cannot
be deleted. The bit can be reset by a call to the SATR$$ subroutine.

protection. non_owner_rights
The rights granted to a user when attached to the containing directory, having
given the nonowner password or no password.

file_info.longjratjidr
If set, indicates that the file is a Disk Record Availability Table (DSKRAT)
containing more than one record.

filejnfo.dumped
If set, the file has been backed up by MAGS AV.

4-20 Second Edition

DIR$LS

File and Directory Manipulation

file_info.dos_mod
If set, the file was modified while PRIMOS II (DOS) was running. This
applies only to files on pre-Rev. 20.0 disks.

file_info.special
If set, the file is special (for example, DSKRAT, BOOT, MFD) and cannot be
deleted. For the root entry, this is always set.

filejnfo.rwlock
Indicates the setting of the file's read/write concurrency lock, which can be set
with the PRIMOS RWLOCK command. Possible values are

0 Use system default setting (SYS option).

1 Unlimited readers or one writer (EXCL option).

2 Unlimited readers and one writer (UPDT option).

3 Unlimited readers and writers (NONE option).

file-info.spare
Two bits presently undefined.

filejnfo.type
Indicates the type of object described by this entry. Possible values are

0

1

2

3

4

6

7

SAM file

DAM file

SAM segment directory

DAM segment directory

Directory

Access category

CAM file

date_time_mod
The date/time the file was last modified, in standard FS format. FS-format
dates are described in Appendix C of Volume III. For the root directory (<),
this information is returned for the date last mounted.

non_default_acl
This bit is set if the object is not protected by the default ACL; that is, it is
protected by a specific ACL or by an access category. For the root directory
(<), this attribute requires a reference to the MFD of the mounted disk.

Second Edition 4-21

DIR$LS

Subroutines Reference II: File System

logicaljype
This is an additional file type to the physical file type described in
fileJnfo.type. Possible values are

0 Normal file

1 Recovery based file (RBF)

trunc
This bit is set if the file has been truncated by the FIX_DISK utility;
otherwise, it is zero.

date_time_backed_up
Reserved for future use. This field is currently returned as zero (unset).

Valid dirjentry Attributes for the Root Directory: The following are the
valid attributes for the root directory (<), except when remote ADDISK
operations are used to build the root. In that case, all attributes will be set to
either a default value or a nonapplicable value.

• owner rights, deletejprotect, non owner rights, file jnfo, and dtb
attributes are read at mount time only.

• The dtm attribute is the time of the logical-mount (ADDISK) operation.

• The non default acl is always set for a nonpassword MFD.

• The dta is not set.

• The access and protected_by attributes require a reference to the MFD of
the mounted disk.

The root directory has no actual attributes because the root directory has no entry
itself in another directory; it is at the top of the common file system name space.
However, using a portal, you can make it appear as if the root were contained in
another directory. In this case, only the following attributes are set by the DIR$
subroutines:

ecw.type Directory

ecw.length 37 halfwords

entryname The name of the portal

special Set

non_defau.ltprotection Set (the root directory always has $REST:LU ACL
rights)

4-22 Second Edition

http://non_defau.lt

DIR$LS

File and Directory Manipulation

For more information on the root directory, refer to the discussion on the Rev.
23.0 file system in the Advanced Programmer's Guide II: File System.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 4-23

DIR$RD

Subroutines Reference II: File System

DIR$RD

DIR$RD reads sequentially the entries of a directory open on a file unit.

Usage

DCL DIR$RD ENTRY (FIXED BIN, FIXED BIN, PTR, FIXED BIN,
FIXED BIN);

CALL DIR$RD (key, unit, return_ptr, maxjreturnjen, code);

Parameters

key

INPUT. Indicates whether to initialize for subsequent reading or to read from
current position. Possible values are

K$INIT Initialize to directory header.

K$READ Read from current position.

unit

INPUT. Unit number on which directory is open. User must have List access
to the directory.

return_ptr

INPUT -> OUTPUT. Pointer to program-declared directory structure
(described below).

maxjreturnjen
INPUT. Size of user's buffer.

code

OUTPUT. Standard error code.

Discussion

FS-format dates are structured as described in Appendix C of Volume III.

Note Calls to DIR$RD and ENT$RD should not be made on the same directory file unit unless
DIR$RD is called with the K$INIT key following each ENT$RD call.

4-24 Second Edition

DIR$RD

File and Directory Manipulation

The return_ptr points to a directory entry structure with the following format
Note that ecw is actually a halfword.

DCL 1 di
2

2
2
2
2

2

2
2
2
2
2

r_entry BASED,
ecw,
3 type BIT(8),
3 length BIT(8),
entryname CHAR(32),
pw_protection BIT(16) ALIGNED,
non_default_protection BIT(l) ALIGNED,
file info,
3 long_rat_hdr BIT(l),
3 dumped_bit BIT(l),
3 dos_mod BIT(l),
3 special BIT(l),
3 rwlock BIT(2),
3 reserved BIT(2),
3 type BIT (8),
date time modified,
3 date,

4 year BIT(7),
4 month BIT(4),
4 day BIT(5),

3 time FIXED BIN,
spare (2) FIXED BIN,
trunc BIT(l) ALIGNED,
dtb like date_time_modified,
dtc like date_time modified,
dta like date time modified;

ecw.type
Entry control word for the entry. Values are

2 Normal directory entry (file, directory, or segment
directory)

3 Access category

User programs should ignore any entry types that are not recognized. This
allows future expansion of the file system without adversely affecting existing
programs.
DIR$RD returns entries only for named objects. Thus it does not return the
ecw (entry control word) for the directory header, type is 2 for a file or
directory, and 3 for an access category.

Second Edition 4-25

DIR$RD

Subroutines Reference II: File System

ecw.length
24 halfwords for PRIMOS revisions up to and including 19.2,27 halfwords
for revisions from 19.3, 31 halfwords from 20.0 onward, and 37 halfwords
from 22.0 onward.

entryname
The name of the entry, in uppercase, left-justified, and filled with spaces. If a
root directory has been designated as a portal, with the NAM$AD_PORTAL
subroutine, entryname refers to the portal.

pw_protection
Owner and nonowner protection attributes. For the root entry, this attribute is
read at mount time only. The owner rights are in the high-order eight bits, the
nonowner in the low-order eight bits. The meanings of the bit positions are as
follows (a set bit grants the indicated access right):

1-5, 9-13 Reserved for future use

6.14 Delete/truncate rights

7.15 Write-access rights

8.16 Read-access rights

non_default_protection
Set to true (' 1 'b) if the entry is not default-protected; it is either protected
specifically or by an access category. For the root entry, this attribute requires
a reference to the MFD of the mounted disk.

file_info.long_rat_hdr

If set, indicates that the file is a Disk Record Availability (DSKRAT) file
spanning more than one disk record.

file_info. dumped_bit
If set (=1), this file has been saved by MAGSAV and has not been modified
since then.

file_info.dos_mod
If set, this file was modified while PRIMOS II (DOS) was running. It
indicates that the date/time last modified field may be incorrect. This applies
only to files on pre-Rev. 20.0 disks.

file_info.special
If set, this is a special file (for example, DSKRAT, BOOT, MFD) and cannot
be deleted. For the root entry, this is always set.

4-26 Second Edition

DIR$RD

File and Directory Manipulation

filejnfo.rwlock
Indicates the setting of the file's read/write concurrency lock. Possible values
are

0 System default setting

1 Unlimited readers or one writer (exclusive)

2 Unlimited readers and one writer (update)

3 Unlimited readers and writers (none)

file_info.type
Indicates the type of object described by this entry. Possible values are

0

1

2

3

4

6

7

SAM file

DAM file

SAM segment directory

DAM segment directory

User directory

Access category

CAM file

date_time_modified
The date and time, in standard FS format, that the entry was last modified. For
the root directory (<), this information is returned for the date last mounted.

trunc
This bit is set if the entry has been truncated by the FIX_DISK utility;
otherwise, reset to zero.

dtb
Date and time the file was last backed up. For the root directory (<), dtb is
read at mount time only.

dtc
Date and time the file was last created.

dta
Date and time the file was last accessed. This attribute is not set for the root
directory (<).

Second Edition 4-27

DIR$RD

Subroutines Reference II: File System

Valid dir_entry Attributes for the Root Directory: The following are the
valid attributes for the root directory (<), except when remote ADDISK
operations are used to build the root. In that case, all attributes will be set to
either a default value or a nonapplicable value.

• ownerjights, delete_protect, nonowner rights, fileinfo, and dtb
attributes are read at mount time only.

• The dtm attribute is the time of the logical-mount (ADDISK) operation.

• The non default act is always set for a nonpassword MFD.

• The dta is not set.

• The access and protected by attributes require a reference to the MFD of
the mounted disk.

The root directory has no actual attributes because the root directory has no entry
itself in another directory; it is at the top of the common file system name space.
However, using a portal, you can make it appear as if the root were contained in
another directory. In this case, only the following attributes are set by the DIR$
subroutines:

ecw.type Directory

ecw.length 37 halfwords

entry name The name of the portal

special Set

non defaultprotection Set (the root directory always has $REST:LU ACL
rights)

For more information on the root directory, refer to the discussion on the Rev.
23.0 file system in the Advanced Programmer's Guide II: File System.

Loading and Linking information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-28 Second Edition

DIR$SE

DIR$SE

File and Directory Manipulation

DIR$SE returns entries meeting caller-specified selection criteria to a directory
open on a file unit.

Usage

DCL DIR$SE ENTRY (FIXED BIN(15), FIXED BIN(15), BIT(l),
PTR OPTIONS(SHORT), PTR OPTIONS
(SHORT),FTXED BINQ5), FIXED BIN(15),
FIXED BIN(15),(4) FIXED BIN(15),
FIXED BIN(15), FIXED BIN(15));

CALL DIR$SE {dirjunit, dirjype, initialize, sel_ptr, return_ptr,
maxjentries, entryjsize, entjreturned, typejcounts,
maxjype, code);

Parameters

dirjunit
INPUT. Unit on which directory to be searched is open.

dirjype
INPUT. Type of object open on dirunit. Possible values are

2 SAM segment directory

3 DAM segment directory

4 User directory

initialize
INPUT. If set (='1 'b), directory is to be reset to the beginning. If not set, the
directory is to be searched from the current position.

seljptr
INPUT. Pointer to the structure containing selection criteria. See the
Discussion section. In languages that default to using a long pointer, sel_ptr
must be declared as OPTIONS (SHORT).

return_ptr

INPUT -> OUTPUT. Pointer to caller's return structure for selected entry
data. This parameter points to where the subroutine places the output. In

Second Edition 4-29

DIR$SE

Subroutines Reference II: File System

languages that default to a long pointer, return_ptr must be declared as a short
pointer.

maxjentries
INPUT. Maximum number of entries to be returned. If the value of initialize
is 1, and if the call is being used only to initialize the directory search, and not
to return any entries, this parameter is 0. The value ofmaxentries should be
set to a maximum of 150. If you anticipate more entries than 150, establish a
loop that reiterates the call to DIR$SE until the end of file code (E$EOF) is
returned. Failure to use this maximum value can cause unpredictable results.

entry_size
INPUT. Number of halfwords to be returned per entry. Permissible values of
entry size are given in the length entry in the description of the entry control
word (see the Discussion section).

entjreturned
OUTPUT. Number of entries returned.

type_counts
INPUT/OUTPUT. Number of entries of each type returned in this order: files,
segment directories, directories, access categories. This parameter is a
four-halfword array. The type-counts are incremented each time DIR$SE is
called; that is, the number of types returned in this call of DIR$SE is added to
the current type-counts totals. When the initialize bit is set, these counts are
reset to the total number of types returned in this call.

maxjype
INPUT. Number of types in type counts (currently must be 4).

code
OUTPUT. Standard error code. Possible values are

E$B VER Invalid version number for selection criteria structure.

E$BPAR Bad max_type (currently must be four).

E$EOF There are no more entries in the directory to be selected.

E$ST19 Selection criteria involving recovery based file (RBF) type
or date/time last backed up, accessed, or created have been
specified, and the PRIMOS revision that accesses the
directory does not support these features.

E$NTUD Object open on dirunit is not a directory.

E$NBUF No buffer space. Number specified for maxentries is too
large.

4-30 Second Edition

DIRSSE

File and Directory Manipulation

Discussion

The selection criteria should be supplied in one of the following structures. The
first field in the structure, versionno, indicates which of the two structures the
caller is providing. Version 0 is provided for compatibility with Revision 19.4 of
the operating system, but can be used if the date/time accessed or date/time
created fields are not used as selection criteria. Version 1 should be used for
Revision 20.0 and subsequent revisions. The sel_ptr parameter should point to
the structure.

Version 0

DCL 1 selection_criteria BASED,
2 version_no FIXED BIN, /* Must be 0 */
2 wild_J)tr PTR OPTIONS (SHORT) ,
2 wild_count FIXED BIN,
2 desired_types,

3 dirs BIT(l),
3 seg_dirs BIT(l),
3 files BIT(l),
3 access_cats BIT{1),
3 RBF BIT(l),
3 spare BIT(11),

2 modified_before_date FIXED BIN(31),
2 modified_after_date FIXED BIN(31),
2 backed_up_before_date FIXED BIN(31),
2 backed_up_after_date FIXED BIN(31);

Version 1

DCL 1 selection_criteria BASED,
2 version_no FIXED BIN, /* Must be 1 */
2 wild_ptr PTR OPTIONS(SHORT),
2 wild_count FIXED BIN,
2 desired_types,

3 dirs BIT(l),
3 segdirs BIT(l),
3 files BIT(l),
3 access_cats BIT(l),
3 RBF BIT(l),
3 spare BIT(11),

2 modified_before_date FIXED BIN(31),
2 modified_after_date FIXED BIN(31),
2 backed_up_before_date FIXED BIN(31),
2 backed_up_after_date FIXED BIN(31),
2 created_before_date FIXED BIN(31),
2 created_after_date FIXED BIN(31),
2 accessed_before_date FIXED BIN(31),
2 accessed after date FIXED BIN (31);

Second Edition 4-31

DIR$SE

Subroutines Reference II: File System

version_no
Must be 0 for the first version (Version 0) of the selection criteria structure, or
1 for the second version (Version 1).

wildjptr

If wildcard entryname selection is to be applied to the directory entries, this
field points to a list of wildcard names for which to search. The list is an array
of CHAR(32) varying strings, and the names must be in uppercase. Wildcards
are explained in the PRIM OS User's Guide and the PRIM OS Commands
Reference Guide.

wildjcount

Is the number of names in the list pointed to by wild_ptr. If wild_count is
zero, entryname is not used as a selection criterion.

desiredjypes
A bit-encoded field defining which types of directory entries the caller wishes
to have returned. The first four bits of this field specify the physical types of
the entries that are to be returned. The fifth bit can be used in combination
with the other four bits to select entries that are also RBF entries, and thus
have a logical type of' 1'. To select only RBF segment directories, the
segdirs and RBF bits are both set, and the other bits are not set. If the first
four bits are set, all entries are returned. If all five bits are set, all entries that
are also RBF entries are returned.

The fields listed below select entries based on one of the four date attributes.
The input date is in standard FS format, or is zero if this field is not to be used as
a selection criterion.

modifiedJbefore_date
Selects entries with date/time modified earlier than this date.

modified_after_date
Selects entries with date/time modified later than this date.

backed_up_before_date
Selects entries with date/time backed up earlier than this date. The date/time
backed up field is set by the BRMS backup utility.

backed_up_after_date
Selects entries with date/time backed up later than this date.

createdJbefore_date
Selects entries with dateAime created earlier than this date.

4-32 Second Edition

DIR$SE

File and Directory Manipulation

created_after_date
Selects entries with dateAime created later than this date.

accessed_before_date
Selects entries with dateAime accessed earlier than this date.

accessed_after_date
Selects entries with dateAime accessed later than this date.

FS-format dates are structured as shown in Appendix C of Volume III.

Example

DIR$SE returns the information for all the entries selected by this call in the
following structure:

DCL 1 dir_entries (*) BASED,
2 ecw,

3 type BIT(8),
3 length BIT(8),

2 entryname CHAR(32) VAR,
2 protection,

3 owner rights,
4 spare BIT(5),
4 delete BIT(l),
4 write BIT(l),
4 read BIT(l),

3 delete_protect BIT(l),
3 non_owner_rights,

4 spare BIT(4),
4 delete BIT(l),
4 write BIT(l),
4 read BIT(l),

2 file_info,
3 long_rat_hdr BIT(l),
3 dumped BIT(l),
3 dos_mod BIT(l),
3 special BIT(l),
3 rwlock BIT(2),
3 spare BIT(2),
3 type BIT(8),

2 date_time_mod FIXED BIN(31),
2 non_default_acl BIT(1) ALIGNED,
2 logical_type FIXED BIN,
2 trunc BIT(l) ALIGNED,
2 date_time_backed_up FIXED BIN(31),
2 date_time_created FIXED BIN(31),
2 date_time accessed FIXED BIN(31);

Second Edition 4-33

DIR$SE

Subroutines Reference II: File System

ecw.type
Entry control halfword for the entry. Values are

2 Normal directory entry (file, file directory, or segment
directory)

3 Access category

ecw.length

24 halfwords for PRIMOS revisions up to and including 19.2, 27 halfwords
for revisions from 19.3, 31 halfwords from Rev. 20.0 onward, and 37
halfwords from Rev. 22.0 onward.

entryname
Name of the entry, in uppercase. If a root directory has been designated as a
portal, with the NAM$AD_PORTAL subroutine, entryname refers to the
portal.

protection.owner_righ ts

Rights granted to a user, when attached to the containing directory having
owner rights. For the root directory (<), this attribute is read at mount time
only.

protection.delete_protect
If this bit is set, the file cannot be deleted. The bit can be reset by a call to the
SATR$$ routine. The root directory (<) cannot be deleted.

protection.non_owner_rights
Rights granted to a user, when attached to the containing directory having
nonowner rights. For the root directory (<), this attribute is read at mount time
only.

filejnfo.longjratjndr
If set, indicates that the file is a Disk Record Availability (DSKRAT) file
spanning more than one disk record.

file_info.dumped
If set, this file has been saved by MAGSAV and has not been modified since
then.

file_info.dos_mod
If set, this file was modified while PRIMOS II (DOS) was running. It
indicates that the date/time last modified field may be incorrect. This applies
only to files on pre-Rev. 20.0 disks.

4-34 Second Edition

DIR$SE

File and Directory Manipulation

fileJinfo.special
If set, this is a special file (for example, DSKRAT, BOOT, MFD) and cannot
be deleted. For the root directory (<), this is always set.

filejnfo.rwlock
Indicates the setting of the file's read/write concurrency lock. Possible values
are

0 System default setting

1 Unlimited readers or one writer (exclusive)

2 Unlimited readers and one writer (update)

3 Unlimited readers and writers (none)

fllejnfo.type
Indicates the type of object described by this entry. Possible values are

0

1

2

3

4

6

7

SAM file

DAM file

SAM segment directory

DAM segment directory

User directory

Access category

CAM file

date_time_mod
The date/time the file was last modified, in standard file system format.
FS-format dates are coded as shown in Appendix C of Volume III. For the
root directory (<), date time mod refers to the date last mounted.

non_default_acl
This bit is set if the object is not protected by the default ACL — that is, if it
is protected by a specific ACL or by an access category. For the root directory
(<), this attribute requires a reference to the MFD of the mounted disk.

logicaljype
This is an additional file type to the physical file type described in
fileinfo.type. Possible values are

0 Normal files

1 RBF files

Second Edition 4-35

DIR$SE

Subroutines Reference II: File System

trunc
This bit is set if the file has been truncated by the FIX_DISK utility;
otherwise, reset to zero.

date_time_backed_up
This field returns the date and time the file was last saved by the BRMS
backup utility, in FS format If it has never been saved, the value is zero. For
the root directory (<), datejimebackedup is read at mount time only.

date_time_created
On a Rev. 20.0 partition, this field returns the date and time the file was
created in FS format. On a Revision 19.0 partition, the returned value is zero.

datejimejaccessed
On a Rev. 20.0 partition, this field returns the date and time the file was last
accessed, in FS format. On a Revision 19.0 partition, the returned value is
zero. This attribute is not set for the root directory (<).

Valid dir_entry Attributes for the Root Directory: The following are the
valid attributes for the root directory (<), except when remote ADDISK
operations are used to build the root. In that case, all attributes will be set to
either a default value or a nonapplicable value.

• owner rights, deletejprotect, nonowner rights, fileinfo, and dtb
attributes are read at mount time only.

• The dtm attribute is the time of the logical-mount (ADDISK) operation.

• The non_defau.lt acl is always set for a nonpassword MFD.

• The dta is not set.

• The access and protectedby attributes require a reference to the MFD of
the mounted disk.

The root directory has no actual attributes because the root directory has no entry
itself in another directory; it is at the top of the common file system name space.
However, using a portal, you can make it appear as if the root were contained in
another directory. In this case, only the following attributes are set by the DIR$
subroutines:

ecw.type Directory

ecw.length 37 halfwords

entryname The name of the portal

4-36 Second Edition

http://non_defau.lt

DIR$SE

File and Directory Manipulation

special Set

non defaultprotection Set (the root directory always has $REST:LU ACL
rights)

For more information on the root directory, refer to the discussion on the Rev.
23.0 file system in the Advanced Programmer's Guide II: File System.

Loading and Linking information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 4-37

ENT$RD

Subroutines Reference II: File System

ENT$RD

ENT$RD returns the contents of a named entry in a directory open on a file unit.

Usage

DCL ENT$RD ENTRY (FIXED BIN, CHAR(32)VAR, PTR, FIXED BIN,
FIXED BIN);

CALL ENT$RD (unit, name, return _ptr, maxjreturnjen, code);

Parameters

unit

INPUT. Unit number on which the directory is open.

name

INPUT. Name of the entry to read.

return_ptr

INPUT -> OUTPUT. Pointer to program-declared return structure.

max_return_len
INPUT. Size of user's buffer.

code

OUTPUT. Standard return code.

Discussion

ENT$RD is identical to DIR$RD in what it returns, but rather than going
sequentially through the directory, ENT$RD returns data for a particular named
entry.

The structure returned by ENT$RD is identical to that described for the DIR$RD
subroutine.

Note Calls to DIR$RD and ENT$RD should not be made on the same directory file unit unless
DIR$RD is called with the K$INIT key following each ENT$RD call.

4-38 Second Edition

ENT$RD

File and Directory Manipulation

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 4-39

EQUAL$

Subroutines Reference II: File System

EQUAL$

EQUALS generates a filename based on another name.

Usage

DCL EQUALS ENTRY (CHAR(32) VAR, CHAR(32) VAR,
CHAR(32) VAR, FIXED BIN(15));

CALL EQUALS ipbj_name, pattern, generated, code);

Parameters

objjname
INPUT. The object name being submitted for transformation into the new
name.

pattern

INPUT. A character string that contains the generation pattern of commands
to carry out the transformation.

generated
OUTPUT. The new object name generated according to pattern.

code
OUTPUT. Standard error code.

Discussion

This routine expects an objectname and a generation pattern. The latter contains
"commands" that specify how to transform the objectname into a new name
called the generated name. This routine performs that transformation. Name
generation is discussed in the PRIMOS User's Guide.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-40 Second Edition

EXTR$A

File and Directory Manipulation

EXTR$A

EXTR$A returns a file system object's entryname and parent directory
pathname.

Usage

DCL EXTR$A ENTRY (CHAR (*) VAR, CHAR (*) VAR,
FIXED BIN (15), CHAR (32) VAR, FIXED BIN (15));

CALL EXTR$A (full_path, parent_path, maxjength, entryname, code);

Parameters

fulljpath
INPUT. Object's pathname that is to be split into a parent directory pathname
and an entryname.

parent_path
OUTPUT. Object's parent directory pathname.

maxjength
INPUT. Maximum length of parent_path in characters.

entryname
OUTPUT. Last element of fulljpath (the part of fulljpath that follows the last
> symbol).

code
OUTPUT. Standard error code. Possible values are

E$BPAR fulljpath is not a legal pathname.

E$BFTS The returned length of the parent directory pathname is
greater than maxjength.

Discussion

Given the full pathname of a file system object, the EXTR$A subroutine
separates the pathname of the directory that immediately contains the object
from the entryname of the object, and returns them as two separate elements.
Your program can then do any appropriate directory operations on the name

Second Edition 4-41

EXTR$A

Subroutines Reference II: File System

returned in parent_path, and any appropriate file operations on the name
returned in entryname.

Note At Rev. 23.0, EXTR$A acts as follows when referencing the root directory.

input parent_path entryname

<

<dir_name

<dir_name>mfd

null

<

<dir_name>mfd

null

dir_name

mfd

You cannot use EXTR$ A to access the root directory via the MFD. Therefore, the MFD
must be treated as a special case in your program if you want to access the root

Loading and Linking information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-42 Second Edition

FIL$DL

File and Directory Manipulation

FIL$DL

FTL$DL deletes a file identified by a pathname.

Usage

DCL FIL$DL ENTRY (CHAR(128)VAR, FIXED BIN);

CALL FIL$DL (object_name, code)',

Parameters

objectjname
INPUT. Pathname of the object to be deleted.

code
OUTPUT. Standard error code. Possible values are

E$ITRE objectname is not a legal treename.

E$NRIT Delete access was not available on the parent, or Use
access was missing from some intermediate node.

E$WTPR The disk is write-protected.

E$NINF An error occurred when searching for the file, and the
directory level at which the error occurred did not allow
List access.

E$DLPR The file's delete-protect switch is set.

Discussion

FIL$DL is used to delete files and empty directories. Delete access is required on
the parent directory.

If error code E$DLPR is returned, SATR$$ must be called to reset the
delete-protect switch before the file can be deleted. This error code is returned
only if the caller has Delete access on the parent directory and is thus allowed to
reset the delete-protect switch.

Deleting an object returns its records to the DSKR AT pool of free records and
erases the entry from the directory, leaving a hole. Holes in directories are reused
for new objects if they are large enough to contain the new object's name, so
new objects do not always appear at the end of a directory. Holes take very little
room on the disk in most cases. They are compressed out of directories when the

Second Edition 4-43

FIL$DL

Subroutines Reference II: File System

FIX_DISK maintenance program is run by the system operator. FIX_DISK is
described in the Operator's Guide to File System Maintenance.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-44 Second Edition

r
* FINFO$

FINFO$

File and Directory Manipulation

FINFO$ returns information about a specified file unit.

Usage

DCL FINFO$ ENTRY (FIXED BIN, PTR, FIXED BIN);

CALL FINFO$ (unit,finfo_ptr, code)',

Parameters

unit
INPUT. File unit on which object whose information is wanted is open.

finfo_ptr
INPUT -> OUTPUT. Pointer to user-declared structure in which information
is to be returned.

code
OUTPUT. Standard error code.

Discussion

The FTNFO$ call returns information about the object open on the specified file
unit (or attach point), including

• Open mode (Read, Read/Write, VMFA read, Attach point)

• Status info (remote, modified, etc.)

• Position

• Read/write lock

• File type

• Logical device number

Second Edition 4-45

FINFO$

Subroutines Reference II: File System

File information is returned in a structure pointed to by finfo_ptr and formatted
as shown below.

DCL 1 finfo_ BASED,
2 version FIXED BIN(15), /* Must be 1 or 2. */
2 status,

3 modified BIT (1),
3 remote BIT (1),
3 shut_down BIT (1) ,
3 no_close BIT (1),
3 disk_error BIT (1),
3 sparel BIT (3),

2 open_mode,
3 spare2 BIT (3),
3 vmfa_read BIT (1),
3 blockjmode BIT (1),
3 attach_point BIT (1),
3 write BIT (1),
3 read BIT (1),

2 file_type FIXED BIN(15),
2 rwlock FIXED BIN(15),
2 position FIXED BIN (31),
2 system_name CHAR(32) VAR,
2 ldevno FIXED BIN(15),
2 packname CHAR(32) VAR,
2 BRA fixed bin(31),
2 ldev fixed bin;

version

INPUT. The version number of the data structure. The user program must
specify 1 or 2 to select a version. Version 2 is identical to Version 1 except
that it includes two additional fields, BRA and ldev (see below).

status
OUTPUT. Information about the current status of the file. The bits have the
following meaning when set:

modified The file has been modified.

remote The file is remote.

shut_down The disk has been shut down.

no_close The file may not be closed.

diskerror There is a disk error on this file.

sparel Reserved.

4-46 Second Edition

FINFO$

File and Directory Manipulation

openjtnode
OUTPUT. The bits have the following meaning when set:

spare! Reserved.

vmfaread Open for VMFA read (subkey K$VMR).

block mode Open for block mode (subkey K$BKIO).

attach jpoint Current or home attach point.

write Open for write.

read Open for read.

For information about the use of the subkeys K$VMR and K$BKIO, see the
description of SRCH$$ later in this chapter.

filejype
OUTPUT. Indicates type of file. The possible values are

0

1

2

3

4

5

7

SAM

DAM

SAM segment directory

DAM segment directory

User directory

ACL directory

CAM

rwlock
OUTPUT. Read/write lock. The possible values are

0 Open to 1 reader or 1 writer (subkey K$DFLT).

1 Open to any number of readers or 1 writer (subkey
K$EXCL).

2 Open to any number of readers and 1 writer (subkey
K$UPDT).

3 Open to any number of readers or writers (subkey
K$NONE).

For information about the use of subkeys to set file attributes, see the description
of SATR$$ later in this chapter.

position
OUTPUT. Read/write pointer position.

Second Edition 4-47

FINFO$

Subroutines Reference II: File System

system_name
OUTPUT. System name for remote unit. If the unit is not remote, returns a
null string.

Idevno
OUTPUT. Logical device of unit from perspective of local node.

packname
OUTPUT. Packname of partition.

BRA
OUTPUT. File's beginning record address. Returned only when the Version 2
structure is selected. (See above.)

Idev
OUTPUT. Logical device for unit for remotely managing node if a remote
object. Returned only when the Version 2 structure is selected. (See above.)

Loading and Unking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-48 Second Edition

FNCHK$

FNCHK$

File and Directory Manipulation

FNCHK$ verifies a supplied string as a valid filename.

Usage

DCL FNCHK$ ENTRY (FIXED BIN, CHAR(*)VAR)
RETURNS (BIT(l));

namejok = FNCHK$ (key, filename);

Parameters

key
INPUT. Defines restrictions on filename. Keys can be added together; for
example, K$UPRC+K$WLDC. Possible values are

K$UPRC Mask name to uppercase before checking.

K$WLDC Allow wildcards in name.

K$NULL Allow null names.

K$NUM Allow numeric names (segment directory entrynames).

filename
INPUT/OUTPUT. Name to be checked (input only unless K$UPRC is used;
in that case, input/output).

namejok
RETURNED VALUE. Set to true (1) if the name is valid given the
restrictions of the keys.

Discussion

This function call validates the string passed as a filename. This means that the
string must not contain PRIMOS reserved characters, lowercase letters, or
control characters, must not start with a digit, and must be between 1 and 32
characters long. The key passed to FNCHK$ can modify these restrictions.

Second Edition 4-49

FNCHK$

Subroutines Reference II: File System

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-50 Second Edition

FORCEW

File and Directory Manipulation

FORCEW

FORCEW forces PRIMOS to write modified records to disk.

Usage

DCL FORCEW ENTRY (FIXED BIN, FIXED BIN[, FIXED BIN]);

CALL FORCEW (ignored,/unit [,code]);

Parameters

ignored
This parameter is not used. Must be 0.

funit
INPUT. The file unit on which a file has been opened.

code
OPTIONAL OUTPUT. Standard error code. The following codes are added
at Rev. 22.0:

E$DISK A disk error occurred on the file referenced by funit. If
code is not supplied as an argument, then disk errors are
not reported.

E$ZERO Indicates that the system found and zeroed out an
uninitialized block in a file on a robust partition.

Discussion

The FORCEW subroutine immediately writes to the disk all modified records of
the file that is currently open on funit. Normally this action is not needed,
because the system automatically updates all changed file system information to
the disk at least once per minute. Under PRIMOS II, the FORCEW routine has
no effect.

FORCEW also writes the following items to disk:

• Index blocks of DAM files

• Extent maps of CAM files

• Modified DSKRAT blocks of files on standard partitions, if the files have
been extended physically

Second Edition 4-51

FORCEW

Subroutines Reference II: File System

Note that on robust partitions, it is not necessary to write DSKRAT blocks to
disk. For this reason, the performance of FORCEW may be better on robust
partitions.

FORCEW returns information about the status of disk write operations to a file.
When a disk write error occurs, all units open on the file are specially marked.
When FORCEW is called with the error code parameter included, if an error
condition exists, E$DISK is returned and the error mark is reset. If the code
argument is not supplied, no action is taken and the error mark on the open file is
not reset. The error mark can then be tested at a later time.

Note The error mark is set in all units associated with the file regardless of which one of them
caused the actual error.

The E$ZERO error can result from improper shutdown of a disk. When a system
halt occurs while a file is being extended logically on a robust partition, some
data blocks may not be written to disk. As a result, there may be uninitialized
blocks in the file. FIX_DISK -FAST will not detect the uninitialized blocks
because it does not check the validity of the data in the file. When the user tries
to read the uninitialized blocks at runtime, PRIMOS determines that the blocks
are invalid, zeros them, and returns E$ZERO. E$ZERO isretumed only the first
time that the block is read or part of the block is written. FORCEW can be used
to ensure that all data blocks are written to a file so that uninitialized blocks will
not occur on the partition.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

4-52 Second Edition

GPATH$

File and Directory Manipulation

GPATH$

Return the pathname of a specified unit, attach point, or segment.

Usage

DCL GPATH$ ENTRY (FIXED BIN, FIXED BIN, CHAR (*),
FIXED BIN, FIXED BIN, FIXED BIN);

CALL GPATH$ (key, funit, buffer, bufflen, pathlen, code);

Parameters

key
INPUT. Specifies the pathname to be returned. Possible values are

K$UNIT Pathname of file open on unit specified by funit is to be

returned.

K$CURA Pathname of current attach point is to be returned.

K$HOMA Pathname of home attach point is to be returned.

K$INIA Pathname of initial attach point (origin) is to be returned.
K$COMO Pathname of Command Output file is to be returned.

K$SEGN Pathname of EPF mapped to funit is to be returned.

funit
INPUT. Specifies file unit number if key is K$UNIT, segment number if key
is K$SEGN; otherwise ignored.

buffer
OUTPUT. The declared name of the character string in which the pathname is
to be returned.

bufflen
INPUT. Specifies maximum length in characters of the data to be returned in
buffer. If the pathname exceeds bufflen characters, data in buffer is
meaningless and a code of E$BFTS is returned.

pathlen
OUTPUT. Specifies the length in characters of the pathname returned in
buffer.

Second Edition 4-53

GPATH$

Subroutines Reference II: File System

code
OUTPUT. Standard error code. Possible values are

E$BKEY A bad key was specified, or segment number was out of

range.

E$BUNT A bad unit number was specified in funit.

E$UNOP Unit specified in funit is closed; no filename is associated
with the unit.

E$NATT Not attached to any directory (keys K$CURA, K$HOMA).

E$BFTS The buffer specified with character length bufflen is too
small to contain entire pathname. The buffer contains no
valid data.

E$FNTF No EPF is mapped to segment funit.

Discussion

GPATH$ obtains a fully qualified pathname for an open file unit, or for current,
home, or initial attach points. GPATH$ operates in V-mode only.

Note In certain cases at Rev. 23.0 and later revisions, it is possible that GPATH$ may not
return the desired pathname. For example, if GPATH$ encounters a remote portal
reference to another directory, and that reference has not been propagated to the Global
Mount Table, the error PATH UNAVAILABLE is returned.

If key is K$SEGN, funit is interpreted as a segment number. In this case GPATH$
returns the name of the EPF mapped to the segment, if there is one.

The following are examples of information returned as the result of using
GPATH$. The lowercase names in italics define the information actually
represented in the examples (shown in uppercase).

<disk_name>MFD
<SPOOLD>MFD

<disk_name>dir_name
<SPOOLD>SPOOLQ

<disk_name>dir_namel>dir_name2>file_name
<SALESD>WEST.COAST>YTD.1990>MARCH

<disk_name>dir_name>segment_directory_name
<OPSYST>PR4 .64>VPRMOS

< di s k_n ame>di r_n ame>segmen t_di r e c t ory_n ame>en t ry_n um>en t ry_n urn
<DBDISK>DICTIONARY>WORDS>22>68

4-54 Second Edition

GPATH$

File and Directory Manipulation

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 4-55

ISREM$

Subroutines Reference II: File System

ISREM$

Determines whether an open file system object is local or remote.

Usage

DCL ISREM$ ENTRY (FIXED BIN, CHAR (128) VAR, FIXED BIN,
CHAR (32) VAR, FIXED BIN) RETURNS (BIT (1));

isjremote = ISREM$ (key, pathname, unit, sysname, code);

Parameters

key
INPUT. Specify how to search for object. Possible values are

K$NAME Search for object by pathname.

K$UNIT Search for object by file unit number.

pathname
INPUT. Pathname of object to search for, if key is K$NAME.

unit
INPUT. Unit on which object is open, if key is K$UNIT.

sysname
OUTPUT. Name of system on which object was found, if remotely attached.
Null if object is found on local system.

code
OUTPUT. Standard error code.

isjremote
RETURNED VALUE. Set to TRUE (' 1 'b) if the object is remotely attached,
FALSE OO'b) if locally attached.

Discussion

The ISREM$ subroutine determines the location (local or remote) of a file
system object identified by either its pathname or its file unit number. An error is
returned if the object was not previously opened.

4-56 Second Edition

ISREM$

File and Directory Manipulation

If the object is associated with a remote system, ISREM$ returns a bit(l) aligned
value of T b in is remote*, otherwise it returns a value of 'O'b. If the object is
found to be remote, the system name of the remote node on which the object
exists is also returned.

If K$NAME is specified and the path is not the current attach point, the current
attach point is set to the home directory when the call is complete.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 4-57

LDISK$

Subroutines Reference II: File System

LDISK$

Returns information on the system's disk table.

Usage

DCL LDISK$ ENTRY (FIXED BIN, CHAR(32) VAR, PTR, FIXED BIN,
FIXED BIN);

CALL LDISK$ (key, system_name, return_ptr, max_entries, code)',

Parameters

key
INPUT. Indicates what subset of the disk list is desired. Possible values are

K$ALL All disks

K$LOCL Local disks only

K$REM Remote disks only

K$SYS Disks for specified system only

system_name
INPUT. Name of the system whose disks are desired. Ignored unless key is
K$SYS.

return_ptr

INPUT -> OUTPUT. Pointer to return structure (defined below).

max_entries
INPUT. Indicates the maximum number of disk information entries that the
caller's structure can contain. At Rev. 21.0 and later versions, no more than
238 disk information entries are returned by this routine.

code
OUTPUT. Standard error code. Possible values are

E$BKEY An illegal key value was passed.

E$B VER Invalid version number for diskjist.

E$BPAR maxentries was less than zero.

E$ROOM More than maxentries disks are in the disk table. This is a
warning; data for maxentries disks is returned.

4-58 Second Edition

LDISK$

File and Directory Manipulation

Discussion

Depending on the key specified, the LDISK$ subroutine returns information on
all disks, local disks only, remote disks only, or disks from a specified remote
system.

Information returned includes name, logical device number (local disks only),
physical device number, system name if remote, priority ACL status, and
write-protect status.

Note At Rev. 23.0, this subroutine is of limited usefulness because LDISK$ returns only
manually added disks. Therefore, if Name_Server is running you should use
NAM$L_GMT instead to get a complete let of accessible disks.

Declare the structure to which LDISK$ returns information as follows:

DCL 1 disk_list BASED,
2 version FIXED BIN, /* Must be 1 */
2 count FIXED BIN,
2 info (max_ldevs),

3 p_acl BIT (1) ,
3 protected BIT (1),
3 robust BIT(l),
3 rsvd BIT (13),
3 ldevno FIXED BIN,
3 pdevno FIXED BIN,
3 disk_name CHAR (32) VAR,
3 system_name CHAR (32) VAR;

version
INPUT. Version number of the structure. The calling program must supply
this value. Currently, must be 1.

count
OUTPUT. Number of entries returned in the info array (described next).
count is always equal to the smallest of the following three quantities: the
number specified in maxentries, the number of disks on the system, or 238.

info.pjacl
OUTPUT. Set if a priority ACL is in effect on this partition. Valid only for
local partitions.

info.protected
OUTPUT. Set if the disk is write-protected. Valid only for local partitions.

Second Edition 4-59

LDISK$

Subroutines Reference II: File System

info.robust
OUTPUT. Set (= 1) if the partition is robust. Not set (= 0) if the partition is
not robust.

info.ldevno
OUTPUT. Logical device number of the partition. At Rev. 23.0, this
information is returned for the disks on your machine only.

info.pdevno
OUTPUT. Physical device number of the partition.

info.diskjname
OUTPUT. Name of the partition. Currently, a partition name is never more
than 6 characters long, but space for 32 is reserved.

info.system_name
OUTPUT. Name of the system on which the disk is physically added. Null
for local disks. Currently, this name is 1 - 6 characters long, but space for 32
is reserved. At Rev. 23.0, if system name is a remote system,
info.system name is obtained from the Global Mount Table (GMT).

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-60 Second Edition

LUDSK$

LUDSK$

File and Directory Manipulation

Lists the disks a given user is using.

Usage

DCL LUDSK$ ENTRY (FIXED BIN, PTR, FIXED BIN, FIXED BIN);

CALL LUDSK$ (user, return_ptr, max_entries, code);

Parameters

user
INPUT. User number whose disks are to be listed. Use 0 (zero) to list disks in
use by current user.

return_ptr
INPUT -> OUTPUT. Pointer to structure containing the returned disk list
(described below).

max_entries
INPUT. Maximum number of disk entries that the structure can contain. At
Rev. 20.2 and later revisions, the maximum is 62.

code
OUTPUT. Standard error code.

Discussion

The LUDSK$ subroutine returns the partition name, the logical device number,
and, if a disk is remotely attached, the system name of each disk that is currently
in use by the user whose user number is specified in user. If user is specified as
zero, information for the disks in use by the calling user is returned.

Note At Rev. 23.0, only the LDEV pathname syntax (<0>CMDNC0) uses the disk table; all
other disk operations go through the Global Mount Table (GMT). LUDSK$ returns a list
of disk names, LDEVs, and remote system units that you are using. Since remote disk
partitions no longer use LDEVs, the LDEV field that LUDSK$ returns is valid only for
local disks.

Second Edition 4-61

LUDSK$

Subroutines Reference II: File System

The structure pointed to by return_ptr has the following format:

DCL 1 rtn_struc BASED,
2 version FIXED BIN,
2 count FIXED BIN,
2 info (max_devs),

3 pack_name CHAR(32) VAR,
3 ldev FIXED BIN,
3 system_name CHAR(32) VAR;

version
Caller-supplied version number of the structure. Must be 2.

count
Number of entries returned. It is the smallest of either the number specified in
maxentries, number of disks on system, or 62.

info.pack_name
Name of the partition represented by this entry. Currently, all partition names
are 1 - 6 characters long, but space for 32 characters is reserved.

info.ldev
Logical disk number associated with this partition. At Rev. 23.0, this
information is returned for local disks only.

info.system_name
If the disk in this entry is remote, the system name to which it is physically
attached. Currently, system names are 1 - 6 characters long, but space for 32
characters is reserved. If systemname is a remote system, this information is
obtained from the Global Mount Table (GMT).

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-62 Second Edition

NAM$AD_PORTAL

File and Directory Manipulation

NAM$AD PORTAL

Converts an existing directory into a portal by mounting the denned portal over
the directory. Future references to this directory are redirected to the portal until
you remove the portal with NAM$RM_PORTAL, discussed later in this chapter.
You may use this subroutine only at the supervisor terminal.

Usage

DCL NAM$AD PORTAL (CHAR(32)VAR, PTR OPTIONS (SHORT),
FIXED BIN);

NAM$AD_PORTAL (entryname, portaljnfo, code);

Parameters

entryname
INPUT. The entry that is changed when you create the portal.

portaljnfo
INPUT. The input structure that defines the attributes of the portal you are
creating.

code
OUTPUT. The standard return code. Possible values are

E$SCCM This routine may only be used at the supervisor terminal.

E$B VER The portal structure version number that you specified is

invalid.

E$BKEY The key that you specified is invalid.

E$NRIT You do not have access rights for this operation.

E$BNAM The entryname that you specified uses incorrect syntax.

E$UNOD The nodename that you specified is not in PRIMENET.

E$BPOR The portal target must be a remote node.

E$IROO A portal may not be mounted on a root directory.

E$NTUD The specified entryname must be a directory.

E$MTPT A portal already exists at the point where you are trying to
mount a portal.

E$RPMH You cannot create a portal through another portal.

Second Edition 4-63

NAM$AD_PORTAL

Subroutines Reference II: File System

E$IREM The portal mount must be on a local directory.

E$FNTF No such entryname exists.

Discussion

The portal_info points to an input structure with the following format.

DCL 1 portal_info,
2 version FIXED BIN<15),
2 portal_target_key FIXED BIN(15),
2 portal_target,
3 node_name CHAR(16) VAR, /* must be specified */
3 partition_name CHAR(6); /* only fordiskjportal*/

portaljargetjcey
INPUT. Type of portal. Possible values are

Key Code Meaning

NAM$K_ROOT 1 root-portal

NAM$K_NOROOT 2 disk-portal

At Rev. 23.0, the new file system introduces the concept of the portal, a new file
system object that allows you to reference an object on a remote system. A
portal acts as a gateway between common file system name spaces, thereby
allowing you to perform operations upon file system objects in other name
spaces, transparently.

For a detailed description of the Rev. 23.0 file system, refer to the Advanced
Programmer's Guide II: File System.

Loading and Linking information

V-mode and I-mode: No special action required.

Effective for PR1MOS Rev. 23.0 and subsequent revisions.

4-64 Second Edition

NAM$L GMT

NAM$L_GMT

File and Directory Manipulation

Reads the contents of the Global Mount Table (GMT) and returns a list of both
the currendy mounted disk partitions and the currently mounted portals which
the calling program can access.

Usage

DCL NAM$L GMT (FIXED BIN, POINTER OPTIONS (SHORT),
FIXED BIN(15), FIXED BIN(15), FIXED BIN(IS));

CALL NAM$L GMT (index, ret_ptr, maxjtems, retjtems, status);

Parameters

index
INPUT. A number that indicates the starting Global Mount Table entry in the
list to be returned; use index when filling in the structure to which retjptr
points. The GMT list of entries may be referenced as an array

[l...(«-D]

where n is the total of the number of entries in the GMT. Use an array to call
the NAM$L_GMT subroutine as many times as there are GMT entries if the
declaration of the structure is too small.

ret_ptr
INPUT. A pointer to the structure that NAM$L_GMT fills in (the items for
each GMT entry).

maxjtems

INPUT. The maximum number of entries to be declared as GMT entries in
the index field. If the maxjtems field is smaller than (n-1), structure
overflow occurs.

retjtems
INPUT. The number of entries filled in the structure.

Second Edition 4-65

NAM$L_GMT

Subroutines Reference II: File System

status
OUTPUT. The standard return code. (NoError indicates successful
completion.)

Badlndex No such entry exists at the index given in the GMT.

Discussion

Rev. 23.0 introduces the concept of the common file system name space. The
contents of the disk partitions within the common file system name space make
up one logical entity. Therefore, logically, there are no remote disks within the
name space. Also, the Global Mount Table for any name space may include as
many as 1280 disks, all appearing to be local.

You must be either the System Administrator or Userl (supervisor terminal) to
return the remote private partitions (partitions on other machines that were
created with the ADDISK-PRIVATE command).

For a detailed description of the Rev. 23.0 file system, refer to the Advanced
Programmer's Guide II: File System. Refer also to the discussions on the
ADDISK command in the Operator's Guide to System Commands and in the
System Administrator's Guide, Volume III: System Access and Security.

The entries in the Global Mount Table are returned by ret_ptr to the gmt_ent_def
data structure, which has the following format:

DCL 1 gmt_ent_def BASED,
2 version FIXED BIN,
2 owning_node CHAR(16) VAR,
2 portal_target_node CHAR(16) VAR,
2 partition_name CHAR(6),
2 partition_uid CHAR(12),
2 ldev FIXED BIN,
2 dtc FIXED BIN(31),
2 dtm FIXED BIN(31),
2 state,

3 portal_entry BIT,
3 private_partition BIT,
3 entry_in_root BIT,
3 pre-ns_entry BIT,
3 disk_replaced BIT,
3 remote_disk BIT,

2 pathname CHAR(128) VAR;

version
The version number for the structure.

owning_node
The system to which the object was added.

4-66 Second Edition

NAM$L_GMT

File and Directory Manipulation

portal_target_node
The system being referenced by the portal.

partition _name
The name of the disk partition.

partition _uid
The partition UID for the entry.

Idev
The ldev of the disk partition.

dtc
The date and time when the MFD was created.

dtm
The date and time when the MFD was last modified.

state.portaljentry
Set if the entry defines a portal.

state.private partition
Set if the entry is a private partition.

state.entryJnjroot
Set if the partition is added at the root directory.

state.pre_ns_entry
Set if the entry added is from a pre-Rev. 23.0 system.

state.disk_replaced
Set if the disk was added with the -REPLACE option.

state.remote_disk
Set if the disk was added with the -ON option.

pathname
The mount point for the entry.

Loading and Linking Information

V-mode and I-mode: No special action required.

Effective for PRIMOS Rev. 23.0 and subsequent revisions.

Second Edition 4-67

NAM$RM_PORTAL

Subroutines Reference II: File System

NAM$RM PORTAL

Deletes a portal entry in the specified directory pathname. This subroutine may
only be used at the supervisor terminal.

Usage

DCL NAM$RM_PORTAL ENTRY (CHAR(32)VAR, FIXED BIN);

CALL NAM$RM PORTAL (entryname, code);

Parameters

entryname
INPUT. The entry that represents the portal mount point.

code
OUTPUT. The standard return code. Possible values are

E$SCCM This routine may only be used at the supervisor terminal.

ESNRTT You do not have access rights for this operation.

E$BNAM The entryname that you specified uses incorrect syntax.

E$FNTF The specified portal was not found; delete operation failed.

E$IREM The specified portal mount must be on a local directory.

Discussion

See also NAM$AD_PORTAL, earlier in this chapter. At Rev. 23.0, the new file
system introduces the concept of the portal, a new file system object that allows
you to reference an object on a remote machine. A portal acts as a gateway
between common file system name spaces, thereby allowing you to perform
operations upon file system objects in other namespaces, transparently.

For a detailed description of the Rev. 23.0 file system, refer to the Advanced
Programmer's Guide H: File System.

Loading and Linking Information

V-mode and I-mode: No special action required.

Effective for PRIMOS Rev. 23.0 and subsequent revisions.

4-68 Second Edition

PAR$RV

File and Directory Manipulation

PAR$RV

Returns a logical value indicating whether a specified partition supports ACL
protection and quotas.

Usage

DCL PAR$RV ENTRY (CHAR (32) VAR, FIXED BIN) RETURNS
(FIXED BIN);

par_rev = PAR$RV (part_name, code);

Parameters

part_name
INPUT. Partition name whose revision number is to be returned. Currently,
partition names are 1 - 6 characters long, but space for 32 characters is
reserved.

code
OUTPUT. Standard error code. Possible values are

E$FNTF Partition name not found in disk tables

E$BNAM Invalid disk partition name

parjrev
RETURNED VALUE. Partition revision number. Possible values are

0 ACLs and quotas not supported

1 Converted to allow ACLs and quotas

-1 Error — see error return code (above)

Discussion

The PAR$RV function call returns a revision stamp whose value depends on
whether or not the partition in question allows the use of access control lists
(ACLs) for file protection, and quotas for controlling the amount of space
allocated to directories contained in the partition. Access control subroutines are
described in Chapter 2; quota manipulation subroutines are described later in this
chapter. Further information on the use of ACLs and quotas can be found in the
PRIMOS User's Guide.

Second Edition 4-69

PAR$RV

Subroutines Reference II: File System

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-70 Second Edition

PRWF$$

PRWF$$

File and Directory Manipulation

Reads, writes, positions, or truncates a file.

Usage

DCL PRWF$$ ENTRY (FIXED BIN, FIXED BIN, PTR OPTIONS
(SHORT), FIXED BIN, FIXED BIN (31),

FIXED BIN, FIXED BIN);

CALL PRWF$$ (prekey+rwkey+poskey+modekey, funit, LOC(buJ), nhw,
pos, rnhw, code);

Or, as a function call:

file_position = PRWF$$ (prekey+rwkey+poskey+modekey,
funit, LOC(buJ), nhw, pos, rnhw, code);

Parameters

prekey
INPUT. Indicates the action to be taken before other keys, if any, are
executed. Possible value is

K$PEOF Move the file pointer to the end of the file.

rwkey
INPUT. Indicates the action to be taken. Possible values are

K$READ Read nhw halfwords from the object open on funit into buf.

K$WRIT Write nhw halfwords from buf to the object open on funit.

K$POSN Set the current position to the value in pos.

K$TRNC Truncate the file open on fiinit at the current position.

K$RPOS Return in pos the current position as a number of halfwords
from the beginning of the object.

Second Edition 4-71

PRWF$$

Subroutines Reference II: File System

poskey
INPUT. Key indicating the positioning to be performed (if omitted, implies
K$PRER). Possible values are

K$PRER Move the file pointer offunit the number of halfwords
specified by pos relative to the current position before
performing the action specified by rwkey.

K$POSR Move the file pointer of funit by the number of halfwords
specified hypos relative to the position resulting from the
action specified by rwkey.

K$PREA Move the file pointer of funit to the absolute position
specified by pos before performing the action specified by
rwkey.

K$POSA Move the file pointer of funit to the absolute position
specified by pos after performing the action specified by
rwkey.

modekey
INPUT. Key that can be used to transfer all or a convenient (to the system)
number of halfwords (if omitted, read or write nkw). Possible values are

K$CONV Read or write a convenient number of halfwords (up to the
number specified by the parameter nhw).

K$FRCW Perform a write to disk from buffer before executing next
instruction in the program.

funit
INPUT. A file unit number (1 through 15 for PRIMOS II, 1 through 32767
for PRIMOS) on which a file has been opened by a call to SRCH$$ or by a
PRIMOS command. PRWF$$ actions are performed on this file unit.

LOC(*K/)

INPUT/OUTPUT. Pointer to the data buffer to be used for reading or
writing. If a buffer is not needed for a given PRWF$$ call, it can be specified
as loc(O) in the CALL statement.

nhw
INPUT. The number of halfwords to be read or written (mode=0) or the
maximum number of halfwords to be transferred (mode=K$CONV). nhw
must be between 0 and 65535.

pos
INPUT/OUTPUT. An integer specifying the relative or absolute positioning
value depending on the value of poskey.

4-72 Second Edition

PRWF$$

File and Directory Manipulation

rnhw
OUTPUT. A 16-bit unsigned integer set to the number of halfwords actually
transferred when rwkey = K$READ or K$WRIT. Other keys leave rnhw
unmodified.

code
OUTPUT. Standard error code. The following codes are added at Rev. 22.0:

E$ZERO Indicates that the system found and zeroed out an
uninitialized block in a file on a robust partition.

E$IFCB The disk does not contain enough free contiguous blocks.

filejjosition
The beginning of the file position where the data transfer occurred.

Discussion

prekey is additive and is executed prior to all other keys. It does not change the
behavior of other keys; it merely moves the file pointer to the end of the file,
before executing the other keys. It thereby allows file extension from a single
call to PRWF$$.

prekey also allows applications to save the beginning position of the record just
appended to the file. This ensures that the end-of-file position cannot be
changed before the new record is appended, thus supporting access integrity with
a minimum of file searches by the user application.

pos is always a 32-bit integer. All calls to PRWF$$ must specify pos even if no
positioning is requested. An INTEGER*4 0 can be generated by specifying
000000 or INTL(0) in FTN, 0L in PMA or Pascal.

poskey is observed for all values of rwkey except K$RPOS, for which it is
ignored (the file position is never changed).

If rwkey = K$POSN, nhw and rnhw are ignored, and no data is transferred.

A call to read or write nhw halfwords causes that number of halfwords to be
transferred to or from the file, starting at the file pointer in the file. Following a
call to transfer information, the file pointer points to the end of the transferred
data in the file. Using a poskey of K$PREA or K$POSA, the user can explicitly
move the file pointer to pos before or after the data transfer operation.

Using SL poskey of K$PRER or K$POSR, the user can move the file pointer
backward pos halfwords from the current position if pos is negative, or forward
pos halfwords if pos is positive. Positioning takes place before or after the data
transfer, depending on the key. If nhw is 0 in any of the calls to PRWF$$, no
data transfer takes place, and PRWF$$ performs a pointer position operation.

Second Edition 4-73

PRWF$$

Subroutines Reference II: File System

The modekey subkey of PRWF$$ is most frequently used to transfer a specific
number of halfwords on a call to PRWF$$. In these cases, the modekey is 0 and
is normally omitted in PRWF$$ calls. In some cases, such as in a program to
copy a file from one file directory to another, a buffer of a certain size is set aside
in memory to hold information, and the file is transferred, one bufferfull at a
time. In this case, the user normally doesn't care how many halfwords are
transferred at each call to PRWF$$, so long as the number of halfwords is less
than the size of the buffer set aside in memory.

Since the user would generally prefer to run a program as fast as possible, the
K$CONV subkey is used to transfer nhw or fewer halfwords in the call to
PRWF$$. The number of halfwords transferred is a number convenient to the
system, and therefore speeds up program execution. The number of halfwords
actually transferred is set in rnhw. For examples of PRWF$$ used in a program,
refer to the file-manipulation examples in Volume I of this series.

The subkey K$FRCW guarantees that PRWF$$ does not return until the disk
record(s) involved are written to disk. The write to disk is performed before
executing the next instruction in the program.

Note Since the K$FRCW defeats the disk buffering mechanism, it should be used with care;
one of its effects is to increase the amount of disk I/O. It should be used only when it is
necessary to know that data has been physically written onto a disk (as when
implementing error recovery schemes).

Whenever PRWF$$ extends a file physically using the K$FRCW key, PRWF$$
writes the following items to disk for every new block written:

• For a DAM file, the DSKRAT block, the data block, and at least one index
block.

• For a CAM file on a standard partition, the extent map, the data block, and
at least one DSKRAT block.

• For a CAM file on a robust partition, the extent map and at least one data
block. DSKRAT blocks of files on robust partitions are not written to disk.

The E$ZERO error can result from improper shutdown of a disk. When a system
halt occurs while a file is being extended logically on a robust partition, some
data blocks may not be written to disk. As a result, there may be uninitialized
blocks in the file. FIX_DISK-FAST does not detect the uninitialized blocks
because it does not check the validity of the data in the file.

When the user tries to read the uninitialized blocks at runtime, PRIMOS
determines that the blocks are invalid, zeros them, and returns E$ZERO.
E$ZERO is returned only the first time that the block is read or part of the block
is written. Using the key K$FRCW prevents a file from having uninitialized
blocks.

4-74 Second Edition

r
r

PRWF$$

File and Directory Manipulation

Whenever PRWF$$ issues a write request to a CAM file for more than one
record and the file needs additional space to accommodate the request, PRIMOS
allocates space only once, regardless of whether the extent length is set, or the
length required is different from that which PRIMOS would allocate by default.
For example, if a userrequest requires that 32 records be written to a file that is 4
records long, PRIMOS allocates 32 additional blocks at once. See the section,
CAM File Subroutines, later in this chapter for a discussion of extent lengths.

When using the K$FRCW key, the programmer is responsible for ensuring that
no other concurrent processes (users) are executing a PRWF$$ call. The file can
be open for use by several processes. The forced write applies only to the data
written by the process performing the operation. See an example of the use of
the key K$FRCW later in this chapter.

On a PRWF$$ BEGINNING OF FILE error or END OF FILE error, the
parameter rnhw is set to the number of halfwords actually transferred.

On a DISK FULL or QUOTA EXCEEDED error, the file pointer is set to the
value it had at the beginning of the call to PRWF$$. The user can, therefore,
delete another file and restart the program (by typing START after using the
DELETE command).

During the positioning operation of PRWF$$, PRIMOS maintains a file pointer
for every open file. When a file is opened by a call to SRCH$$, the file pointer is
set in such a manner that the next halfword that is read is the first one of the file.
The file pointer value is 0, for the beginning of file. If the user calls PRWF$$ to
read 490 halfwords, and does no positioning at the end of the read operation, the
file pointer is set to 490.

Note In V-mode, PRWF$$ transfers words only into and out of the same segment as that
containing the beginning of the buffer. Reading across a segment boundary causes a
wraparound, and reads into the beginning of the segment. Wraparound can also occur
when writing from the buffer.

The following examples show some uses of the PRWF$$ subroutine call.

Example 1: Read the next 79 halfwords from the file open on unit 1:

CALL PRWF$$ (K$READf 1, LOC(BUFFER), 79, 000000, NMREAD,
CODE)

Second Edition 4-75

PRWF$$

Subroutines Reference II: File System

Example 2: Add 1024 halfwords to the end of the file open on UNIT
(10000000 is just a very large number to get to the end of the file; NMW holds
the number of halfwords actually written):

CALL PRWF$$ (K$POSN+K$PREA, UNIT, LOC(O), 0, 10000000, 0,
CODE)

CALL PRWF$$ (K$WRIT, UNIT, LOC(BFR), 1024, 000000,
NMW, CODE)

Example 3: See what position is on file unit 15 (INT4 is INTEGER*4):

CALL PRWF$$ (K$RPOS, 15, LOC(0), 0, INT4, 0, CODE)

Example 4: Truncate file 10 halfwords beyond the position returned by the
above call:

CALL PRWF$$ (K$TRNC+K$PREA, 15, LOC(0), 0, INT4+10, 0,
CODE)

Example 5: Position the file open on unit number UNIT to the tenth
halfword used in the file; then write the first 10 halfwords of ARRAY to it:

INTEGER*2 ARRAY(40), CODE,UNIT,RET
$INSERT SYSCOM>KEYS.F

CALL PRWF$$(K$WRIT+K$FRCW+K$PREA, UNIT, LOC(ARRAY),
X 10,INTL(10),RET,CODE)

IF (CODE .NE. 0) GOTO error_processor

The above FORTRAN call causes the file that is open on unit number UNIT to
be positioned to the tenth halfword in the file, and the first 10 halfwords of
ARRAY are written to it. The next instruction in the user's program is not
executed until the data has actually been written to disk. If an error is
encountered while writing to disk, the error code E$DISK (disk I/O error) is
returned. If more than one concurrent user of the disk record is detected, the
error code E$FIUS (file in use) is returned. In this case, the write is not lost,
but is not performed immediately.

4-76 Second Edition

PRWF$$

File and Directory Manipulation

Example 6: Read and write SAM and DAM files using PRWF$$:

/* Copy SAM, DAM, or CAM files */

cp$$fl:
proc(sunit, tunit, err_info, code);

%include 'syscom>keys.pll' ;
%include 'syscom>errd.pll';

%replace maxsiz by 1024; /* maximum record size in words */

del

del
del
del
del
del
del
del

del
del

sunit
tunit
err info

code
recbuf(maxsiz)
words read
words written
eof
recbuf_ptr
addr
er$print

user_proc
prwf$$

fixed binary(15),
fixed binary(15),
fixed binary(15),

/* unit of open source file
/* unit of target file
/* if code A= 0 indicates
/* file that caused error:
/* 1 = source, 2 = target
/* standard error code
/* I/O buffer
/* actual words prwf$$ read
/* actual words prwf$$ wrote

*/
*/
*/
*/
*/
*/
*/
*/
*/

fixed binary(15);
fixed binary(15)
fixed binary(15);
fixed binary(15);
bit(l) ;
pointer options(short);
builtin;
entry(fixed bin(15, char(*) var, fixed bin(15),
chart*) var, char(*) var);
entry;
entry (fixed binary(15),

/* keys (rwkey+poskey+mode) */
fixed binary(15), /* unit to perform action on */
pointer options(short),

/* address of data buffer */
/* words to read or write */
/* position val */
/* actual words read or wrtn*/
/* standard error code */

fixed binary(15),
fixed binary(31),
fixed binary(15),
fixed binary(15));

Second Edition 4-77

PRWF$$

Subroutines Reference II: File System 7

err_info = 0;
code = 0;
recbuf_ptr = addr(recbuf) ;
eof = '0'b;

do while (~eof);
call prwf$$(k$read, sunit, recbuf_ptr, maxsiz, 0, words_read, code);

if code rt= 0
then if code A= e$eof

then do;
err_info = 1;
return; ^^
end; ^

else eof = 'l'b;

a:
c a l l prwf $$ (k$wri t , t u n i t , r ecbuf_pt r , words__read, 0, words_wr i t t en , code) ;

i f code rt= 0
then if code = e$dkfl

then do;
call er$print(k$irtn, sscs$errd, code, ' ' , 'cp$$fl'); ^^^
call user_proc; /* Wait for response */ 7

go to a;
end;

else do;
err_info = 2;
return;
end;

end;
return;
end cp$$fl;

More examples of the use of PRWF$$ are given with the file system examples
in the Subroutines Reference I: Using Subroutines.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

" >

4-78 Second Edition

Q$READ

File and Directory Manipulation

Q$READ

Returns directory quota and disk record use information.

Usage

DCL Q$READ ENTRY (CHAR(128)VAR, (8) FIXED BIN (31),
FIXED BIN, FIXED BIN, FIXED BIN);

CALL Q$READ {pathname, quotaJnfo, maxjentries, type, code);

Parameters

pathname
INPUT. Name of the directory whose quota information is to be read. List
access must be available either on the directory itself or on its parent. If
pathname is null, information for the current directory is returned.

quotajnfo
OUTPUT. Structure in which quota information is returned. Format is
described below.

maxjentries
INPUT. Number of entries in quotajnfo. Maximum is six for Rev. 20.2 and
later revisions.

type
OUTPUT. Type of directory (input). Possible values are

0 Quota Directory

1 Nonquota Directory

code
OUTPUT. Standard error code. Possible value is

E$NINF Insufficient access to read quota.

Discussion

Quota and disk use accounting concepts are explained in the System
Administrator's Guide, Volume I: System Configuration.

Second Edition 4-79

Q$READ

Subroutines Reference II: File System

The Q$READ subroutine returns a maximum of six items of information. If
more than six are requested, six are returned. A user program can specify, in
maxentries, a smaller number of items; if a value n (1 < n < 6) is specified, the
first n items of the structure are returned. The contents of the two reserved
entries are undefined at Rev. 20.2. The user declares the structure as follows:

DCL 1 quota_info,
2 record_size FIXED BIN (31),
2 dir_used FIXED BIN (31),
2 max_quota FIXED BIN (31),
2 quota_used FIXED BIN (31),
2 rec_timej?roduct FIXED BIN (31),
2 dtm FIXED BIN (31) ,
2 reserved_l FIXED BIN (31),
2 reserved_2 FIXED BIN (31);

record_size
Record size in halfwords: 440 or 1024.

dirjused
Records used in this directory.

max_quota
Quota for this directory.

quotajused

Records used in subtree of this directory.

rec_time_product
Cumulative record-minutes for this directory.

dtm
Date/time when rec_time_product was last updated, in standard file-system
date format. (See Appendix C of Volume III for more information about this
format.) The dtm value is always the time when Q$READ is executed,
because execution of Q$READ forces the quota block to be flushed to disk.

When this call is invoked on a nonquota directory, type has a returned value of
1, and max_quota, rec_time_product, and dtm have returned values of 0. The
value returned in dir used indicates the sum of the records used in the files in the
directory and the records used by the directory itself, quotaused indicates the
sum of the records used for all files and subdirectories of this directory.

Quota directories return a type value of 0, and all requested quota information.

The system keeps an accounting use meter in each quota directory. This meter is
a summation of the time intervals that each disk record has been in use.

4-80 Second Edition

Q$READ

File and Directory Manipulation

The accounting meter is a counter that acts as an unsigned 32-bit integer, which
is to say that it counts to all ones (some 4.3 billion) and then goes to 0. The
system also indicates when the last update occurred.

The USAGE is computed in record-minutes, computed according to the
formula:

TIME = (Current date/time) - (Date/time quota last modified)

USAGE = USAGE + (quota_used) * TIME

An accounting program would use a similar algorithm to calculate the current
record-time product.

Loading and Unking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 4-81

Q$SET

Subroutines Reference II: File System

Q$SET

Sets a quota on a subdirectory in the current directory.

Usage

DCL Q$SET ENTRY (FIXED BIN, CHAR(128)VAR, FIXED BIN (31),
FIXED BIN);

CALL Q$SET (key, pathnam, max_quota, code);

Parameters

key
INPUT. Must be K$SMAX (set maximum quota).

pathname
INPUT. An array containing the name of the subdirectory to receive the
quota.

max_quota
INPUT. Maximum quota for the directory and its subtree.

code
OUTPUT. Standard return code. Possible values are

E$NRIT Insufficient access to set quota.

E$IMFD Quota not permitted on MFD.

E$QEXC Used records greater than new maximum (WARNING).

E$FIUS Directory in use during attempt to convert from nonquota
to quota.

Discussion

If the directory specified in pathname is not already a quota directory, it is
converted to a quota directory.

The user must have Protect access to the directory's parent.

If max quota is specified as 0, any quota already existing on the directory is
removed, and the directory becomes a nonquota directory. If max_quota is
assigned a value that is less than the number of records already used in this
directory, a warning is returned, but the quota is set to the new value. Under

4-82 Second Edition

Q$SET

File and Directory Manipulation

these conditions, the user will receive a MAXIMUM QUOTA EXCEEDED message
whevever an attempt is made to add records to a file in the directory. The number
of records used in the directory must be reduced (normally by deleting old or
unneeded files) to less than the value of the new quota.

Loading and Linking information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 4-63

RDEN$$

Subroutines Reference II: File System

RDEN$$

RDEN$$ positions in or reads from a directory.

This subroutine is considered obsolete, and its use in new programming is
discouraged. Use DIR$RD or ENT$RD instead. Users maintaining existing
programs that call RDEN$$ can refer to Appendix A for a complete description
of the subroutine.

4-84 Second Edition

RDLIN$

RDLIN$

File and Directory Manipulation

Reads a line of characters from an ASCII disk file.

Usage

DCL RDLIN$ ENTRY (FIXED BIN, CHAR(*), FIXED BIN,
FIXED BIN)[, RETURNS (BIT(16)]);

CALL RDLIN$ (funit, buffer, count, code);

Or, as a function call:

linejength - RDLIN$ (funit, buffer, count, code);

Parameters

funit
INPUT. File unit on which the file to be read is open.

buffer
INPUT. Name of a varying string of count halfwords in which the line of
information from the disk file is to be read.

count
INPUT. Size of buffer in halfwords.

code
OUTPUT. Standard error code. The following code is added at Rev. 22.0:

E$ZERO Indicates that the system found and zeroed out an
uninitialized block in a file on a robust partition.

linejength
OPTIONAL RETURNED VALUE. The length of the line just read, which
may be one of the following:

-1 End of file

0 Any error condition

Second Edition 4-85

RDL1N$

Subroutines Reference II: File System

Discussion

A line of characters from the file open on funit is read into the area specified by
buffer, two characters per halfword. Lines on the disk are separated by the
newline character. For compressed files, when a control character DCl (221
octal) followed by a number is read from the disk, the DCl is suppressed and the
number is replaced by that many spaces in the buffer.

If the line being read is less than twice the count characters, the remaining
characters in the buffer are filled with spaces. If it is greater than twice the count
characters, only twice the count characters fill the buffer and the remaining
characters on the disk file line are lost. The newline character itself never
appears as part of the line read into the buffer.

When RDLESF$ detects an uninitialized block, it returns any valid data.
Whenever the start of a line is lost, it is not possible to determine where the
end-of-line is. For this reason, whenever RDLIN$ encounters an uninitialized
block, the position in the file is set to the beginning of this block, and the
operation is terminated. If the read request spans blocks, whatever data is
available from valid blocks is returned in the buffer.

The E$ZERO error can result from improper shutdown of a disk. When a system
halt occurs while a file is being extended logically on a robust partition, not all
data blocks may be written to disk. As a result, there may be uninitialized blocks
in the file. FIX_DISK -FAST will not detect the uninitialized blocks because it
does not check the validity of the data in the file. When the user tries to read the
uninitialized blocks at runtime, PRIMOS determines that the blocks are invalid,
zeros them, and returns E$ZERO. E$ZERO is returned only the first time that
the block is read or part of the block is written.

Loading and Linking information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

4-86 Second Edition

SATR$$

File and Directory Manipulation

SATR$$

Sets or modifies an object's attributes in its directory entry.

Usage

DCL SATR$$ ENTRY (FIXED BIN, CHAR (32), FIXED BIN,
(2) FIXED BIN, FIXED BIN);

CALL SATR$$ (key, object, namlen, attributes, code);

Parameters

key
INPUT. Specifies the action to take. Possible values are

K$PROT Set password protection attributes from the first halfword
of the attributes array. The second halfword of attributes
is ignored for pre-Rev 19.0 partitions and must be 0 for
Rev 19.0 and newer partitions.

K$DTIM Set date/time modified from both halfwords of attributes.

K$DTB Set date/time backed up from both halfwords of attributes.

K$DTC Set date/time created from both halfwords of attributes.
Note that only the system console (user 1), or users who
belong to the .BACKUPS ACL group, can use K$DTC.

K$DTA Set date/time last accessed from both halfwords of
attributes. Note that only the system console (user 1), or
users who belong to the .BACKUPS ACL group, can use
K$DTA.

K$DMPB Set the dumped bit. This bit is set by the utility program
that takes backup dumps of modified files, and is reset by
the operating system whenever the file is modified.

Caution It is important to use the K$DMPB key with care, because indiscriminate resetting of the
dumped bit can result in failure to back up the affected file.

K$RWLK Set the read/write lock on a per-file basis. Bits 15 and 16
of the first halfword of attributes are set by the user for
specific lock values.

Second Edition 4-67

SATR$$

Subroutines Reference II: File System

K$SDL

K$LTYP

K$TRUN

Set the delete switch (for use with ACLs). If the first
halfword of attributes is not 0, the delete switch is set. If it
is 0, the switch is cleared.

Set the logical type field in the file entry to the value in the
first word of attributes. This field should never be set by
user software. It is for Prime internal use only.

Set the "truncated by FIX_DISK" bit from the value in bit
1 of the first halfword of attributes. This field should never
be set by user software. It is for Prime internal use only.

object
INPUT. Name of the object whose attributes are to be modified. The current
directory is searched for object.

namlen
INPUT. Length in characters of object.

attributes
INPUT. Field containing the attributes; one or two halfwords, depending on
key. Possible values are

K$PROT A 16-bit (one-halfword) structure defining the password
protection rights for the object, as defined below.

K$DTxx A 32-bit (two-halfword) structure containing the date/time

to set, in standard FS format.

K$DMPB Ignored.

K$RWLK One of the following sub-keys:

K$DFLT Use system default value

K$EXCL Unlimited readers or one writer

K$UPDT Unlimited readers and one writer

K$NONE Unlimited readers and writers

K$SDL A 16-bit (one-halfword) quantity. If nonzero, the
delete-protect switch is set on. If zero, it is set off.

code
OUTPUT. Standard error code. Possible values are

E$BKEY An invalid key value was passed.

E$BNAM Object name is invalid.

E$BPAR namlen is less than 1 or greater than 32.

4-88 Second Edition

SATR$$

File and Directory Manipulation

E$NATT The current attach point is invalid.

E$NRIT Protect access (Delete access for K$SDL) is missing from
the current directory; or, a user who does not belong to the
.BACKUPS ACL group has attempted to use SATR$$ with
K$DTA or K$DTC.

E$WTPR The disk is write-protected.

E$NINF An error occurred during search of the directory, and List

access was not available.

E$FNTF The object does not exist.

E$I ACL The object is an access category, and a key other than

K$DTIM was used.

E$DIRE The object is a directory, and the K$RWLK key was used.

E$ATNS The attribute is not supported in the directory, which is in
pre-Rev. 20.2 format.

Discussion

The attributes that can be set include

• Password protection

• DateAime modified, backed up, created, or accessed

• Dumped bit

• Read/write lock

• Delete-protect switch

The password protection structure is as follows:

DCL 1 pw_protection,
2 owner_rights,
3 ignored BIT(5),
3 delete BIT(l),
3 write BIT(l),
3 read BIT(l),

2 non_owner_rights,
3 ignored BIT(5),
3 delete BIT(l),
3 write BIT(l),
3 read BIT(l);

The standard FS-format date is structured as described in Appendix C of Volume
III.

Second Edition 4-89

SATR$$

Subroutines Reference II: File System

Note SATR$$ does not check the validity of the supplied date and time. Users must assure that
the date/time passed is legal.

The date/time modified field and the dumped bit are changed by PRIMOS.
When PRIMOS changes these fields for a file, the corresponding fields of the
file's parent directory are not changed. However, when the name or protection
attributes of the file are changed, the date/ time modified and the dumped bit of
the parent directory are updated, and the dumped bit for the file is reset.

Since a call to SATR$$ modifies the directory, the dateAime modified and
date/time last accessed of the directory itself are updated.

The PRIMOS file system supports read/write locking (concurrency) on a per-file
basis. The read/write lock is used to regulate concurrent access to the file, and
was formerly alterable only on a systemwide basis. The read/write lock bits are
bits 5 and 6 oifdejnfo, as described for the DIR$LS subroutine, earlier in this
chapter.

The meaning of the lock values is

Value Bits 5,6 Meaning

0 0,0 Use systemwide RWLOCK to regulate concurrent
access.

1 0,1 Allow arbitrary readers or one writer.

2 1,0 Allow arbitrary readers and one writer.

3 1,1 Allow arbitrary readers and arbitrary writers.

Files are created with read/write lock bits set to 00.

User directories do not have user-alterable read/write locks, although segment
directories do. Files in a segment directory have the per-file read/write lock of
the segment directory.

The per-file read/write lock value can be read by any of the directory reading
subroutines: DIRLS, DIRRD, DIR$SE, or ENT$RD. It is set by a SATR$$
call with a key of K$RWLK. The desired value is supplied in bits 15 and 16 of
the first halfword of attributes, the remaining bits of which must be 0. On
pre-Rev. 19.0 partitions, the SATR$$ call fails with an error code of E$OLDP.
Owner rights to the containing directory are required, otherwise the call fails
with an error code of E$NRIT.

An attempt to set the lock value of a directory fails with an error code of
E$DIRE. If the SATR$$ call requests a lock value which is more restrictive than
the current use of the file, the file's lock value is changed and current users of the
file are unaffected, but any subsequent open requests are governed by the new
lock value.

4-90 Second Edition

SATR$$

File and Directory Manipulation

The commands MAGSAV and MAGRST properly save and restore the per-file
read/write lock along with the file itself. Existing backup tapes without saved
read/write locks on them are restored with read/write locks of 0, so the
systemwide RWLOCK setting continues to control access to such files.

The COPY command with the -RWLOCK option copies the per-file read/write
lock setting along with the file.

Owner rights are required on the directory containing the entry to be modified,
except with K$SDL, which requires delete access.

An attempt to set the date/time modified, the dumped bit, or the read/write lock
on a pre-Rev. 19.0 partition results in an E$OLDP error.

The following examples illustrate some uses of the SATR$$ subroutine.

Example 1: Set default protection attributes on MYFILE:

ARRAY(1)=:3400 /* OWNER=7, NON-OWNER=0

ARRAY(2)=0 /* SECOND WORD MUST BE 0

CALL SATR$$ (K$PROT, *MYFILE', 6, ARRAY(l), CODE)

Example 2: Set both owner and nonowner attributes to read-only (note
carefully the bit positioning in two-halfword octal constant):

CALL SATR$$ (K$PROT, ^NO-YOU-DON" T', 12, :100200000,
CODE)

Example 3: Set date/time modified from directory entry read into ENTRY by
RDEN$$:

CALL SATR$$ (K$DTIM, FILNAM, 6, ENTRY(21), CODE)

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition 4-91

SGDSDL

Subroutines Reference II: File System

SGD$DL

Deletes a segment directory entry.

Usage

DCL SGD$DL ENTRY (FIXED BIN, FIXED BIN);

CALL SGD$DL (segdirjunit, code);

Parameters

segdirjunit
INPUT. Unit on which the segment directory is open.

code
OUTPUT. Standard error code. Possible values are

E$BUNT segdirjunit contains an invalid value.

E$SUNO Unit is not open, or is not open for writing.

E$NTSD Object open on segdirjinit is not a segment directory.

E$FNTS Entry at the current position does not exist, or the segment
directory is positioned past the end.

Discussion

SGD$DL is used to delete an entry from a segment directory. The segment
directory must have been previously opened for writing (by a call such as
SRCH$$), and must be positioned (by an SGDR$$ call) at the entry to be
deleted.

Delete access is required to the segment directory containing the member to be
deleted. The date/time modified and dateAime accessed fields are updated in the
segment directory.

Loading and Linking information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-92 Second Edition

SGD$EX

SGD$EX

File and Directory Manipulation

Finds out whether there is a valid entry at the current position within the segment
directory open on a specified unit.

Usage

DCL SGD$EX ENTRY (FIXED BIN, FIXED BIN, FIXED BIN);

CALL SGD$EX (unit, type, code);

Parameters

unit
INPUT. Specifies the unit number on which the segment directory is open.

type
OUTPUT. Type of file detected (SAM or DAM).

code
OUTPUT. Standard error code.

Discussion

SGD$EX attempts to read the entry at the current position. If there is no valid
SEGDIR entry at that position, SGD$EX returns the error E$FNTS (NOT FOUND
IN SEGMENT DIRECTORY).

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 4-93

SGD$OP

Subroutines Reference II: File System

SGD$OP

Opens a segment directory entry.

Usage

DCL SGD$OP ENTRY (FIXED BIN, FIXED BIN, FIXED BIN,
FIXED BIN, FIXED BIN, FIXED BIN)
RETURNS (FIXED BIN);

openjunit = SGD$OP {key, segjunit, file _unit, file _type, newjtype, code);

Parameters

key
INPUT. Mode in which object is to be opened. Possible values are

K$READ Open object for reading (input only).

K$WRIT Open object for writing (output only).

K$RDWR Open object for reading and writing (input/output).

K$VMR Open object for virtual memory file access (VMFA)
reading. Used only before calling one of the EPF
subroutines for initializing or executing an EPF.

segjunit
INPUT. File unit on which the segment directory containing the entry is
opened. The segment directory must have been opened (by a call to SRCH$$,
for example) before the call to SGD$OP can be issued.

filejunit

INPUT. File unit on which the entry is to be opened. Supply either a specific
file unit number between 1 and 126, or the value -10000 to cause PRIMOS to
select one. The selected unit number is returned in openunit.

filejype

OUTPUT. Type of file opened. Possible values are

0 Sequential access (SAM) file

1 Direct access (DAM) file

2 Sequential access segment directory (SEGSAM)

3 Direct access segment directory (SEGDAM)

7 Contiguous access (CAM) file

4-94 Second Edition

SGD$OP

File and Directory Manipulation

newjype
INPUT. Type of object to be created if it does not exist (key must be K$WRIT
or K$RDWR). Possible values are

0 Create a sequential access (SAM) file.

1 Create a direct access (DAM) file.

2 Create a sequential access segment directory (SAM
Segdir).

3 Create a direct access segment directory (DAM Segdir).

7 Create a contiguous access (CAM) file.

code
OUTPUT. Standard error code.

openjunit
RETURNED VALUE. File unit number of the newly opened entry.

Discussion

A full description of the SGD$OP subroutine is given in the Advanced
Programmer's Guide II: File System.

Loading and Linking information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 4-95

SGDR$$

Subroutines Reference II: File System

SGDR$$

Positions in, reads an entry in, or modifies the size of a segment directory.

Usage

DCL SGDR$$ ENTRY (FIXED BIN, FIXED BIN, FIXED BIN,
FIXED BIN, FIXED BIN);

CALL SGDR$$ (akey+filekey, funit, entry a, entryb, code);

Parameters

akey

INPUT. Key specifying the action to be performed. Possible values are

K$SPOS Move the file pointer offunit to the position given by the
value of entrya. The directory must be open for reading or
for both reading and writing. One of the following values
is returned in entryb:

1 If the position given by entrya exists and contains a
file.

0 If the position given by entrya exists but does not
contain a file.

-1 If the position given by entrya is beyond the end of
the directory (EOD).

If EOD is reached on K$SPOS, the file pointer is left at
EOD.

K$FULL Move the file pointer of funit to the position given by the
value of entrya. One of the following values is returned in
entryb:

1 The position given by entrya if this position is full.

0 The position of the next full entry if the position at
entrya is empty.

-1 If the position at entrya is empty and there are no full
positions beyond it. The file pointer is left set at
EOD.

K$FREE Same as for K$FULL, but find an entry that does not
contain a file.

4-96 Second Edition

SGDR$$

File and Directory Manipulation

K$GOND

K$GPOS

K$MSIZ

K$MVNT

K$FACR

Move the file pointer offunit to the end-of-directory
position and return in entryb the file entry number of the
end of the directory.

Return in entryb the file entry number currently pointed to
by the file pointer of funit.

Make the segment directory open on funit entrya entries
long. The file pointer is moved to the end of directory. The
directory must be open for both reading and writing.

Move the entry pointed to by entrya to the entry pointed to
by entryb. The entrya entry is replaced with a null pointer.
An error is returned by K$MVNT if there is no file at
entrya, if there is already a file at entryb, or if either entrya
or entryb is at or beyond the end of the directory. The file
pointer is left at an undefined position. The directory must
be open for both reading and writing.

Locate a free entry in a segment directory and return the
assigned entry number to entryb. If akey equals K$FACR,
you must select the type of file by specifying ihefilekey
attribute.

filekey
INPUT. The type of subfile to be created if akey equals K$FACR. Possible
values are

K$NSAM New SAM file

K$NDAM New DAM file

K$NSGS New SAM segment directory

K$NSGD New DAM segment directory

K$NCAM New CAM file

funit
INPUT. The file unit on which the segment directory is open.

entrya
INPUT. Entry number in the directory, to be interpreted according to value of
key.

entryb
INPUT/OUTPUT. Integer set or used according to value of key.

code
OUTPUT. Standard error code. Value returned depends on value of key.

Second Edition 4-97

SGDR$$

Subroutines Reference II: File System

Discussion

When SGDR$$ is called, the segment directory must not be opened for
Write-only access. Whether Read-only or Read and Write access is required
depends on the action to be performed, as determined by the value of key.

A K$MSIZ call with entrya equal to 0 causes the directory to have no entries. If
the value of entrya is such that it truncates the directory, all entries including and
beyond the one pointed to by entrya must be null. See SRCH$$ for more
segment directory information.

Note When a directory is read sequentially using the K$POS key with entrya values of n, n+1,
n+2,..., the end of the directory is indicated by returning a -1 in entryb, rather than by
returning the E$EOF error code. E$EOF is returned when entrya reaches a value greater
than the value that returned -1 in entryb.

The following examples illustrate some uses of the SGDR$$ call.

Example 1: Read sequentially through the segment directory open on 6:

CURPOS=-l

100 CURPOS=CURPOS+l
CALL SGDR$$ (K$SPOS, 6, CURPOS, RETVAL, CODE)
IF (RETVAL) 200,300,400 /* BOTTOM, NO FILE, IS FILE

Example 2: Make directory open on 2 as big as directory open on 1:

CALL SGDR$$ (K$GOND, 1, 0, SIZE, CODE)
IF (CODE.NE.0) GOTO <error handler>
CALL SGDR$$ (K$MSIZ, 2, SIZE, 0, CODE)

4-98 Second Edition

SGDR$$

File and Directory Manipulation

Example 3: Read and write segment directories using SGDR$$:

cp$$sd:
proc(sunit, tunit, err__info, code) recursive;

%include xsyscom>keys.pll' ;
%include ,syscom>errd.pll' ;

del sunit fixed bin,
tunit fixed bin,
err_info fixed bin,
code fixed bin;

del (entrya,
entryb,
entry_no^ fixed bin;

del (sfunit,
tfunit) fixed bin;

del (newfil,
trash,
tcode,
rtnval,
type) fixed bin;

del er$print entry(bin, char(*) var, bin, char(*) var,
char(*) var);

del srch$$ entry(bin, bin, bin, bin, bin, bin);
del cp$$fl entry(bin, bin, bin, bin);

/* cp$$fl is defined in example 6 for PRWF */
del sgdr$$ entry (fixed bin, /* read segdir entries */

/* first is key */
fixed bin, /* unit on which segdir is open */
fixed bin, /* entrya */
fixed bin, /* entryb */
fixed bin); /* standard error code */

set_target_size: /* make target segdir same number */
/* of entries as source */

err_info = 0;
call sgdr$$(k$gond, sunit, entrya, entry_no, code);
if code A= 0

then go to err_rtn_l;
call sgdr$$(k$msiz, tunit, entry_no, entryb, code);
if code A= 0

then go to err_rtn_2;

Second Edition 4-99

SGDR$$

Subroutines Reference II: File System

main_loop:

do entry_no = 0 repeat (entry_no + 1);

/* position segdirs *,
call sgdr$$(k$spos, sunit, entry_no, rtnval, code);
if code A= 0

then go to err_rtn_l;
if rtnval < 0

then return; /* end of file *,
call sgdr$$(k$spos, tunit, entry_no, entryb, code);
if code A= 0

then go to err_rtn_2;
if entryb < 0

then do;
call er$print(k$irtn, ssc$errd, e$null,

^Unrecoverable error',>cp$$sd');
stop;
end;

if rtnval = 1
then do;

/* found a nonnull entry in source, */
/* open it and same entry in target*/

call srch$$(k$read + k$iseg + k$getu, sunit, 0,
sfunit, type, code);

if code A= 0
then go to err_rtn_l;

newfil = k$nsam;
if type = 1

then newfil = k$ndam;
if type = 2

then newfil = k$nsgs;
if type = 3

then newfil = k$nsgd;
call srch$$(k$rdwr+k$iseg+k$getu+newfil, tunit, 0,

tfunit, trash, code);
if code A= 0

then do;
call srch$$(k$clos + k$iseg, sunit, 0,

sfunit, trash, tcode);
go to err_rtn_2;
end;

4-100 Second Edition

SGDR$$

File and Directory Manipulation

/* do copies */

if type < 2
then call cp$$fl(sfunit, tfunit, err_info, code);
else call cp$$sd(sfunit, tfunit, err_info, code);

/* close the entries just copied */

call srch$$(k$clos + k$iseg, sunit, 0, sfunit, trash,
tcode);

call srch$$(k$clos + k$iseg, tunit, 0, tfunit, trash,
tcode);

if code A= 0
then return;

end;
end;

err_rtn_l:
err_info = 1;
return;

err_rtn_2;
err_info = 2;
return;
end cp$$sd;

Loading and Unking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition 4-101

SIZE$

Subroutines Reference II: File System

SIZE$

Returns the size of a file system entry.

Usage

DCL SIZE$ ENTRY (CHAR(128) VAR, FIXED BIN(15),
FIXED BIN(31), PTR, FIXED BIN(15),
FIXED BIN(15));

CALL SIZE$ (pathname, expected^version, rec_size, buf_ptr, buf_size,
code)',

Parameters

pathname
INPUT. Pathname of the entry whose size is desired.

expected_version
INPUT. Version of output structure expected by caller. Must be 1.

rec_size
INPUT. Record size in halfwords. This is used for calculating the file size in
records. It should be set to 1 if the output units desired are in halfwords.

buf_ptr
INPUT -> OUTPUT. Pointer to the caller's buffer.

buf_size
INPUT. Size of caller's buffer in halfwords.

code
OUTPUT. Standard error code. Possible values are

E$BFTS Buffer too small (returned only if bufsize < 1).

E$FNTF Entry does not exist.

E$NRIT Insufficient access rights.

E$BVER Invalid version number.

E$BPAR Bad parameter (recjize < 1).

4-102 Second Edition

SIZE$

File and Directory Manipulation

Discussion

The SIZES subroutine returns the size (in halfwords) and type of the object
specified by pathname. If the object is one that contains subentries (a file
directory, a segment directory, or an access category), the number of subentries is
also returned. For directories, SIZES indicates whether or not the object is an
ACL directory.

The caller must have Read access if the object is a file or a segment directory, or
List access if it is a file directory. List and Use rights to the parent directory are
also required.

SIZES does not alter the date/time accessed (DTA) field of the specified object.
It does, however, modify the DTA of the parent directory.

If the buffer size specified in the bufsize parameter is too small for the entire
structure, the first bufsize halfwords are returned.

The following is the structure returned by the subroutine in the caller's buffer:

DCL 1 size_info,
2 version_number FIXED BIN(15),/* Must be 1 */
2 struc_len FIXED BIN(15),
2 entry_type FIXED BIN(15),

/* Structure size (bytes) */
/* Type, as follows:
0: SAM file
1: DAM file
2: SAM segment dir
3: DAM segment dir
4: User directory
6: ACAT
7: CAM file */
/* Size in halfwords divided
by record_size. For SD,
total size of member
files. 0 for ACATs. */
/* Valid only for CAM files.
No. of physical records.*/
/* Valid only for user
directory
1' b -> ACL directory. */
/* Valid only if entry is an

ACAT, user directory, or
SD. Total number of
entries in ACAT or user
directory, maximum number
of entries for SD. */

num_full_entries FIXED BIN(31); /* Valid only for SD.
Current number of full
entries. */

2 logical_size FIXED BIN(31),

2 phys_recs FIXED BIN(31),

2 is_acl_dir BIT(l) ALIGNED,

2 num entries FIXED BIN(31),

Second Edition 4-103

SIZE$

Subroutines Reference II: File System

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-104 Second Edition

SRCH$$

SRCH$$

File and Directory Manipulation

Opens, closes, deletes, changes access, or verifies the existence of an object.

Usage

DCL SRCH$$ ENTRY (FIXED BIN, CHAR (32), FIXED BIN,
FIXED BIN, FIXED BIN, FIXED BIN);

CALL SRCH$$ (action+ref+newfil, object_name, nam Jen, funit, type,
code)\

Parameters

action

INPUT. Indicates the action to be performed. Possible values are

K$READ Open objectname for reading on funit.

Open objectname for writing on funit.

Open object name for reading and writing on funit.

Close objectname or object open on funit.

Delete object_name.

Verify existence of object name.

K$WRIT

K$RDWR

K$CLOS

K$DELE

K$EXST

K$VMR Open objectname for VMFA read. Valid only if
objectname is an EPF-format runfile.

ref
INPUT. Modify the action key as follows:

K$IUFD Search for objectname in the current directory. (This is
the default.)

K$ISEG Perform the action specified by action on the file that is a
segment directory entry in the directory open on file unit
specified in objectjtame.

K$CACC Change the access mode of the file already open on funit to
that specified in action (K$READ, K$WRIT, or K$RDWR
only).

K$GETU Open objectname on an unused file unit selected by
PRIMOS. The unit number is returned in funit. See
Example 6 for use of this key.

Second Edition 4-105

SRCH$$

Subroutines Reference II: File System

K$CURR Open a unit on the current attach unit.

K$NMNT If object name is a disk/portal mount point, the error code
E$MTPT is returned.

newfil
INPUT. Type of file to create if objectname does not exist and action is
K$WRIT or K$RDWR. Possible values are

K$NSAM New SAM file (the default)

K$NDAM New DAM file

K$NSGS New SAM segment directory

K$NSGD New DAM segment directory

K$NCAM New CAM file

Note It is not possible to create a directory with SRCH$$; use DIR$CR instead.

objectjtame
INPUT. Name of the object to be opened (1 - 32 characters). SRCH$$ reads
this string until it encounters a blank, reads the number of characters specified
in nam Jen, or reads 32 characters. Therefore, a string of blanks or an
object name beginning with a blank is treated as a null string; a null string
defaults to the name of the current directory. An object name of K$CURR
can also be used to open the current directory (action keys K$READ,
K$WRIT, or K$RDWR only).

If refh K$ISEG, objectname is a file unit from 1 through 126 (1 through 15
under PRIMOS II) on which a segment directory is already open.

namjen
INPUT. Length in characters (1-32) of objectname.

funit
INPUT/OUTPUT. Number of the file unit to be opened or closed (input).
When SRCH$$ is used with ref= K$GETU, funit returns the
PRIMOS-selected file unit number selected by PRIMOS.

type
OUTPUT. Variable set to the type of the file opened, type is set only on calls
that open a file — it is unmodified for other calls.

4-106 Second Edition

SRCH$$

File and Directory Manipulation

Possible values of type are

0 SAM file

1 DAM file

2 SAM segment directory

3 DAM segment directory

4 User directory

7 CAM file

code
OUTPUT. Standard error code. The following error codes are specific to this
subroutine:

Keyword Value Meaning

E$NATT 7 No root-entry directory attached. This error usually
occurs only when the directory to which the user is
attached is removed from the system, as when a disk is
shut down.

E$NRIT 10 Insufficient access rights. You do not have List access
to the current directory.

E$MTPT Directory is a mount point. You cannot reference a
directory that is the mount point of another directory,
so that tape backup procedures do not cross mount
points. This error is returned by the ref 'key K$NMNT.

Discussion

The SRCH$$ subroutine has multiple uses. The most common use is to open
and close files. It can also be used to add, delete, change access to, and verify
the existence of file system objects.

Note The delete functions of SRCH$$ are better performed by FILSDL and SGDSDL.

Opening Objects: Opening an object consists of connecting the object to a
file unit. After an object is opened, various input, output, and positioning actions
can be performed on it. These actions are accomplished by other subroutines,
which reference the object through the associated file unit: PRWF$$, SGDR$$,
RDEN$$, RDLIN$, WTLINS, I$AD07, O$AD07, RDASC, and WRASC.
Information can also be transferred through I/O statements in all high-level
languages.

Second Edition 4-107

SRCH$$

Subroutines Reference II: File System

On opening an object, SRCH$$ specifies

• Operations that can be performed by other subroutines. These operations
are read-only, write-only, or both read and write.

• Where to look for the object, or where to add the object if it does not
currently exist. SRCH$$ specifies either the name of an object in the
currently attached directory or a file unit number on which a segment
directory is open. In the segment directory reference, file unit's current
position pointer indicates the segment directory member to be opened.

For an ACL-protected object, the user must have access to the object and its
containing directory appropriate to the action to be performed; the object's
access control list specifies the rights a given user or group has to the object.

For password-protected objects, each object in a directory has two sets of access
rights, one for the owner and one for the nonowner of the directory. When an
object is created, its owner has all rights (Read, Write, Delete), and nonowners
have none. These rights can be changed using the PROTECT command or the
SATR$$ subroutine. The access rights are checked on any attempt to open an
object. SRCH$$ returns a NO RIGHTS error code (E$NRIT) if the user does not
have the required rights under either kind of protection.

If a file cannot be found when opening for reading, SRCH$$ returns the FILE
NOT FOUND error code (E$FNTF). If the file unit is already in use, SRCH$$
generates the unit-in-use error code (E$UIUS).

Closing an Object: The SRCH$$ subroutine can close an object by name or
by file unit. SRCH$$ attempts to close by object name unless nam Jen is
specified as 0, in which case it closes the file unit specified. If object name is
not found, an error is generated (code =E$FNTF), but if the file unit is specified,
SRCH$$ ensures that the file unit specified by funit is closed and does not return
an error code (unless funit is out of range).

If the disk is not write-protected, closing the object updates its dateAime last
accessed field. If the object was modified while it was open, closing it updates
its date/time modified field as well.

The Read/Write Lock: By default, PRIMOS allows any number of readers,
or a single writer and no readers for the same object. The system prevents one
user from opening a file for writing when another user has the file open for
reading or writing. It also prevents one user from opening the file for reading or
writing while another user has the file open for writing. These locks also hold
for a single user attempting to open a file on more than one file unit. If a lock
violation is attempted, SRCH$$ returns the FILE IN USE (E$FIUS) error code.

This lock can be changed on a per-file basis. (Refer to the SATR$$ subroutine,
described earlier in this chapter.)

Changing the Access Mode of an Open Object: Using the K$CACC
subkey, a user can change the access mode of an object that is open on funit to

4-108 Second Edition

SRCH$$

File and Directory Manipulation

open for reading, open for writing, or open for both reading and writing. Note
that access rights and the read/write lock rules for the object are checked and the
attempt to change access may fail.

Adding Objects In Directories: A call to SRCH$$ to open a file for
writing or both reading and writing causes SRCH$$ to look in the current
directory for the file. If it is not found in the directory, SRCH$$ creates a new
file of zero length and puts an entry for the file into the directory.

The date/time created and the date/time accessed fields of the file are set to the
current dateAime, the access rights are set to their default values, the read/write
lock is set to the system default, and the file type to the type specified by the
newfil subkey. If the newfil subkey is not specified, it is a SAM file.

On a robust partition, SRCH$$ creates the file as a CAM file and returns a value
of 7 (= CAM file) to type, regardless of the file type requested in newfil. CAM
files are created with one block of physical space.

Verifying the Existence of a File: The K$EXST key can be used to
determine whether a specific object exists in the current directory or in a
segment directory. The object is not affected in any way. The access rights and
the read/write lock are not checked, nor is the dateAime last accessed field
changed. If an illegal filename is given, SRCH$$ returns the status code
E$BNAM.

Operations on Subdirectories: The contents of entries of subdirectories
can be read through calls to ENTRD, DIRLS, DIRRD, DIRSE, and
GPAS$$ once the subdirectory is open. The current directory can be opened by
specifying the key K$CURR in the object name field of the SRCH$$ call.
While the current directory can be opened for writing, or for reading and writing,
write operations such as PRWF$$ cannot explicitly write to the directory. Only
implicit writes, such as those performed automatically when updating the
directory to reflect changes, are permitted.

Calls to the SATR$$ or SPAS$$ subroutines require that the current directory not
be open; otherwise, the FILE IN USE error is returned. New directories can be
created only by using the CREA$$ subroutine; SRCH$$ does not allow creation
of a directory. Directories can be deleted with SRCH$$ only if the directory
contains no files. The DELETE command can delete a nested structure of
directories, provided they are not protected.

Second Edition 4-109

SRCH$$

Subroutines Reference II: File System

Operations Involving Segment Directories: Segment directories are
directories in which the files are referenced numerically by their position in the
directory rather than by a name. Furthermore, the directory entry associated with
a file contains the attributes, such as date/time, protection, and the read/write
lock, of the highest level segment directory in the directory. Segment directories
are not attached to, but are operated on using SRCH$$ and SGDR$$.

To create a segment directory, use SRCH$$ to open a new object for reading and
writing with newfil specified as K$NSGS or K$NSGD.

With the file open, use a SGDR$$ call to make the segment directory contain a
certain number of null file entries (K$MSIZ key).

To create a file in a segment directory, follow these steps:

1. Open the directory for reading and writing on a file unit (for example,
SUNIT), if it is not already open.

2. Use SGDR$$ to position to the null file entry into which the new file is to
be placed.

3. Use SRCH$$ to open a new file in the segment directory for writing, or for
reading and writing. Use the K$ISEG reference key and place the SUNIT
number of the segment directory in the objectjiame parameter. Place the
file unit of the new file in \hefunit parameter. SRCH$$ creates the new
file and places a pointer to the new file in the segment directory entry
specified by SUNIT.

Use SRCH$$ with the K$ISEG subkey to close a file in a segment directory by
unit or by name.

To open a file that already exists in a segment directory, use SRCH$$ and
SGDR$$ to open the segment directory and position to the desired entry as
explained above. If the directory entry already contains a pointer to the file, that
file is opened. If not, and the attempt is to open for reading, the FILE NOT
FOUND error is returned. Any object type except a directory can be created in a
segment directory.

To delete a file in a segment directory, open the segment directory, position to the
file desired, and then use SRCH$$ with the K$ISEG and K$DELE subkeys.
SRCH$$ returns the object's records to the DSKRAT and replaces the pointer to
the file with a null pointer in the segment directory entry.

Finally, to delete a segment directory, first delete all files in the directory using
SGD$DL, set the size of the directory to 0 using SGDR$$, close the directory,
and then delete it with FTL$DL. The DELETE subcommand of the SEG
command can also be used to delete a segment directory.

Files in a segment directory have the protection attributes of the directory. The
date/time fields of the directory reflect the latest change made to the directory or
any file in the directory.

4-110 Second Edition

file:///hefunit

SRCH$$

File and Directory Manipulation

The following examples illustrate some uses of the SRCH$$ subroutine.

Example 1: Open new SAM file, RESULTS, for output on file unit 2:

CALL SRCH$$(K$WRIT, 'RESULTS', 7, 2, TYPE, CODE)

Example 2: Create new DAM file in the segment directory open on SGUNIT
and open for reading and writing on DMUNIT:

CALL SRCH$$(K$RDWR+K$ISEG+K$NDAM, SGUNIT, 1, DMUNIT,
TYPE, CODE)

Example 3: Close and delete the file created in the above call:

CALL SRCH$$(K$CLOS, 0, 0, DMUNIT, 0, CODE)
CALL SRCH$$ (K$DELE+K$ISEG, SGUNIT, 0, 0, 0, CODE)

Example 4: See if filename MY.BLACK.HEN is in current directory:

CALL SRCH$$ (K$EXST+K$IUFD, 'MY.BLACK.HEN', 12, 0, TYPE,
CODE)

IF (CODE.EQ.E$FNTF) CALL TNOU(*NOT FOUND', 9)

Example 5: Create a new segment directory and a new SAM file as its first
entry:

CALL SRCH$$(K$RDWR+K$NSGS, 'SEGDIR', 6, UNIT, TYPE, CODE)
CALL SRCH$$(K$WRIT+K$NSAM+K$ISEG, UNIT, 0, 7, TYPE, CODE)

Example 6: Open the file named FILE in the user's currently attached
directory:

CALL SRCH$$(K$READ+K$GETU, ^FILE', 4, UNIT, TYPE, CODE)
IF (CODE .NE. 0) GOTO errorjorocessor

The above FORTRAN call attempts to open the file named FILE in the user's
current directory. If successful, the file unit number on which FILE is opened is
returned in UNIT, the type of the file opened is returned in TYPE, and CODE is
set to 0. If there are any errors, CODE is nonzero, and the values of TYPE and
UNIT are undefined.

If no file units are available, the error code E$FUIU (all units in use) is returned.
This code is returned if either the user process has exceeded the maximum
number of file units allowed, or the total number of file units in use for all
processes exceed the maximum number of file units available.

Second Edition 4-111

SRCH$$

Subroutines Reference II: File System

Example 7: Open file by name:

open$:

proc(key, fullname, unit, type, code);

%include 'syscom>keys.pll';

%replace sam_file by 0,

dam_file by 1,
sam_segdir by 2,
dam_segdir by 3,
directory by 4;

del key bin,
fullname char(*) var,
treename char(128) var,
treelength bin,
unit bin,
type bin,
code bin;

del srch$$ entry(bin, char(*), bin, bin, bin, bin),
newfil bin;

del at$ entry(bin, char(128) var, bin);
del at$hom entry(bin);
del extr$a entry(char{*) var, char(*) var, bin,

char(32) var, bin);
del full bit(l) aligned;
del tree bit(l) aligned,

filename char(32) var;
del length bin;

code = 0;
full = (index(fullname, '>') *- 0);
if full

then do;
call extr$a(fullname,treename, treelength,filename,code);
if code A= 0 then go to cleanup;
tree = (index(treename, '>') A= 0);
if full I tree

then do;
call at$ (k$setc, treename, code);
if code A= 0

then go to cleanup;
end;

end;

4-112 Second Edition

SRCH$$

File and Directory Manipulation

newfil = k$nsam;
if key = k$writ | key = k$rdwr

then if type = dam_file
then newfil = k$ndam;

else if type = sam_segdir
then newfil = k$nsgs;

else if type = dam_segdir
then newfil = k$nsgd;

call srch$$ (key+newfil+k$getu, filename, length,
unit, type, code)/

clean_up:
if tree

then call at$hom (code);
return;

end open$;

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition 4-113

SRSFX$

Subroutines Reference II: File System

SRSFX$

Searches for a file with a list of possible suffixes.

Usage

DCL SRSFX$ ENTRY (FIXED BIN, CHAR(*)VAR, FIXED BIN,
FIXED BIN, FIXED BIN, (*)CHAR(32)VAR,
CHAR(32)VAR, FIXED BIN, FIXED BIN)
[RETURNS(FIXED BIN(31))];

CALL SRSFX$ (action+null_sujfix+ref+newfile, object_name,funit, type,
n_suffixes, suffixjist, basename, suffixjused, code);

(or)
chrpos = SRSFX$ (action+null_suffix+ref+newfile, object_name,funit,

type, n_suffixes, suffixjist, basename, suffix_used, code);

Parameters

action

INPUT. Action to be performed. Possible values are

K$READ Open objectname for reading on funit.

K$WRIT Open objectname for writing on funit.

K$RDWR Open object name for reading and writing on funit.

K$CLOS Close objectname.

K$DELE Delete objectname.

K$EXST Check on existence of objectname.

K$VMR Open objectname for VMFA read. Valid only if
object_name is an EPF-format runfile.

null_suffix
To search for a file with no suffix first, use a plus sign to concatenate
K$NULF to the action argument (for example, K$WRIT+K$NULF).
null_suffix is an optional argument. If you specify K$NULF, PRIMOS first
searches for objectname with no suffix, then searches for objectname with
the suffixes specified in suffixjist. If you do not specify K$NULF, PRIMOS
searches for objectname with no suffix last.

4-114 Second Edition

SRSFX$

File and Directory Manipulation

ref
INPUT. Modifies the action key as follows:

K$IUFD Search for object name in the current directory. (This is
the default.)

K$ISEG Perform the action specified by action on the file that is a
segment directory entry in the directory open on file unit
specified in object name.

K$CACC Change the access mode of the file already open on funit to
that specified in action (K$READ, K$WRIT, or K$RDWR
only).

K$GETU Open objectname on an unused file unit selected by
PRIMOS. The unit number is returned in funit.

newfile
INPUT. Indicates the type of file to create if objectname does not exist and
action is K$WRIT or K$RDWR. Possible values are

K$NSAM New SAM file (the default)

K$NDAM New DAM file

K$NSGS New SAM segment directory

K$NSGD New DAM segment directory

K$NCAM New CAM file

object_name
INPUT. Pathname to use for search. A null string () or a string of blanks
refers to the current directory.

funit
INPUT. File unit opened (returned with K$GETU) or file unit to use for
SRCH$$ action without K$GETU.

type
OUTPUT. File type opened. Note that for CAM files, the type value returned
is 7, even though the value of K$NCAM is 4.

n_suffixes
INPUT. Number of suffixes in suffixlist. A value of 0 indicates not to use the
file naming standards with suffixes for the search.

Second Edition 4-115

SRSFX$

Subroutines Reference II: File System

suffixjist
INPUT. List of desired suffixes to use. Each suffix should include the period
and be in capital letters, for example, suffix_list(iy=\F77. The suffixes can
have varying lengths; therefore the suffix list of variable strings is declared as
(*)CHAR(32)VAR.

basename
OUTPUT. Base filename (that is, without a suffix) to be searched for
according to the suffix list.

suffixjused
OUTPUT. Index, in the suffix list given, of the suffix used for the search. A
value of 0 denotes that the null suffix was used.

code
OUTPUT. Standard error code.

chrpos
OPTIONAL RETURNED VALUE. When SRSFX$ is called as a function, a
FIXED BIN(31) value is returned. The first halfword points, in the case of an
invalid pathname, one character past the pathname component that caused the
error. The second halfword is the pathname length.

Discussion

SRSFX$ is intended for use with the file naming convention that appends a
standard suffix by means of a period, as in MYPROG.PASCAL. The suffix list
defines both the suffixes to scan for and the search order. If the suffix already
exists at the end of the filename, then a tree search is performed with the
pathname as is.

If none of the suffixes in the list are found appended to pathname, the subroutine
attaches to the appropriate directory, each suffix in the list is appended to the
filename, and a search is done. In this way the suffix list defines the search order.
The subroutine returns when a filename suffix is found or the suffix list is
exhausted. When the subroutine returns, it reattaches to the home directory.

If a file is found, the index (in the suffix list) of the last suffix in the filename is
returned; if no file is found, or if none of the suffixes in the list is on the found
filename, an index of 0 is returned.

SRSFX$ can be combined with APSFX$ to force a name to have a suffix
according to the current file naming conventions, even if the file did not
originally have one. For example, the ACL command SET_ACCESS looks for
an access category with the suffix.ACAT. If SRSFX$ finds a file with no such
suffix, APSFX$ can then be used to return the filename plus the suffix required
for the next step.

4-116 Second Edition

SRSFX$

File and Directory Manipulation

The following restrictions apply when using the SRSFX$ call:

• The null string is not allowed as an element of the suffix list. The null
suffix is assumed if no desired suffix is found. In this case the suffix index
is set to 0.

• If the suffix list contains .F77, a pathname such as pathname>.F77 is
treated as a valid suffix found; that is, .F77. The filename returned is the
null string ().

• If the filename and suffix exceed 32 characters or the pathname and suffix
exceed 128 characters, a search with suffix is not done and the next suffix
is attempted. For example, a filename of 32 characters is simply searched
for as is.

• The suffixes in the suffix list provided by the caller must contain the period
and be all capital letters; for example, .F77.

Program Using SRSFX$ and CL$PIX: Here is an example of a simple
program that uses SRSFX$ to check on the existence of a file. It also uses the
CL$PIX routine.

main:

p roc ;

$Insert syscom>keys.ins.pll

$Insert syscom>errd.ins.pll

/* External entry points */

del srsfx$ entry (fixed bin, char(*)var, fixed bin,
fixed bin,fixed bin, (1) char(32)var,
char(32)var,fixed bin, fixed bin),

cl$get entry (char(*)var, fixed bin, fixed bin),
cl$pix entry (bit(16) aligned, char(*)var, ptr,

fixed bin, char(*)var, ptr, fixed bin,
fixed bin, fixed bin, ptr),

er$print entry (fixed bin, char(*) var, fixed bin,
char(*) var, char(*) var),

tnoua entry (char(*), fixed bin),
todec entry (fixed bin) ,
tnou entry (char(*), fixed bin);

Second Edition 4-117

SRSFX$

Subroutines Reference II: File System

/* Local declarations */

del 1 bvs based, /* Based Varying String */
2 len fixed bin,
2 chars char (128);

del pathname char(80)var,
dir_name char(80)var,
fil_name char(80)var,
unit fixed bin,
type fixed bin,
num_suff fixed bin,
suff_list (10) char(32)var,
suff_used fixed bin,
status fixed bin,
code fixed bin,
non_st_code fixed bin,
pix_index fixed bin,
bad_index fixed bin,
picture char(30)var,
pic_ptr ptr,
out_ptr ptr,
arg_line char(150) var;

del 1 args,
2 dir char(128) var,
2 file char(32) var;

/* PROMPT USER FOR ARGUMENTS */

call tnoua ('Enter directory pathname and filename
arguments:', 49) ;

/* READ IN ARGS TO CALL */

call cl$get (arg_line, 150, code);
if code A= 0

then call er$print(k$nrtn, ssc$errd, code,
'CANNOT READ ARGS', "test');

else do;

/* SET UP DATA FOR CL$PIX */

picture = 'tree; entry; end';
pic_ptr = addr(picture);
out^ptr = addr(args);

4-118 Second Edition

SRSFX$

File and Directory Manipulation

/* CALL CL$PIX TO PARSE ARGUMENTS */

call cl$pix(0, 'test', pic_ptr, 30, arg_line, out_ptr,
pix_index, bad_index, non_st_code, nullO);

if non_st_code A= 0
then do;
call tnoua ('CANNOT PARSE ARGS, error code = ',32);
call todec (non_st_code);
call tnouC ', 1) ;
end;

else do;

/* CHECK FOR EXISTENCE OF FILE IN SON, FATHER, GRANDFATHER ORDER */

unit = 2;
num_suff = 3;
suff_list(l) = '.SON';
suff_list(2) = '.FATHER';
suff_list(3) = '.GRANDFATHER';

pathname = dir || '>' II file;
call srsfx$(k$exst, pathname, unit, type, num_suff,

suff_list, file, suff_used, status);
if status > 0

then call er$print(k$irtn, ssc$errd, status,
addr (pathname) -> bvs.chars, ' ') ;

else do;
if suff_used = 0

then do;
call tnoua('base file name only found: ', 27);
call tnou(addr(pathname) -> bvs.chars,

addr(pathname) -> bvs.len);
end;

else do;
pathname = pathname I I suff_list(suff_used);
call tnoua (addr(pathname) -> bvs.chars,

addr(pathname) -> bvs.len);
call tnou (' form of file name found', 24);
end;

end;
end;

end;
end;

Second Edition 4-119

SRSFX$

Subroutines Reference II: File System

This program gives the following output if the '.SON' form of the file exists:

R TEST
Enter directory pathname and filename arguments: TEST_UFD TEST_FILE
TEST_UFD>TEST_FILE.son form of file name found

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

4-120 Second Edition

TNCHK$

File and Directory Manipulation

TNCHK$

Verifies that a supplied string is a valid pathname.

Usage

DCL TNCHK$ ENTRY (FIXED BIN, CHAR(*)VAR)
RETURNS (BIT(l));

namejok = TNCHK$ (key, pathname);

Parameters

key
INPUT. Determines the restrictions to be placed on the name. Keys can be
added together. Possible values are

K$UPRC Change name to uppercase before checking.

K$WLDC Allow wildcard characters in name.

K$NULL Allow a null pathname.

pathname
INPUT. Must follow the rules for pathnames given in the PRIMOS User's
Guide, modified by the key above.

namejok
RETURNED VALUE. Set to TRUE (1) if the name is valid given the
restrictions of the keys; otherwise, set to FALSE (0).

Discussion

TNCHK$ verifies that a pathname conforms to the rules for constructing
pathnames, as outlined in the PRIMOS User's Guide. TNCHK$ does not verify
that an object represented by pathname actually exists.

Note that TNCHK$ always verifies pathnames that contain numeric components,
such as the following pathname:

FRED>1>2

Entrynames within the pathname can be checked individually for validity by
calls to FNCHK$, described earlier in this chapter.

Second Edition 4-121

TNCHK$

Subroutines Reference II: File System

Loading and Linking information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-122 Second Edition

TSRC$$

File and Directory Manipulation

TSRC$$

TSRC$$ opens a file anywhere in the PRIMOS file structure.

This subroutine is considered obsolete, and its use in new programming is
discouraged. Use SRSFX$ instead. Users maintaining existing programs that
call TSRC$$ can refer to Appendix A for a complete description of the
subroutine.

Second Edition 4-123

UNITS$

Subroutines Reference II: File System

UNITS$

Returns the minimum and maximum file unit numbers currently in use by this
user.

Usage

DCL UNITS$ ENTRY (FIXED BIN (IS), FIXED BIN (15));

CALL UNITS$ (minjunit, maxjunit)',

Parameters

minjunit
OUTPUT. Lowest numbered file unit currently in use by this user.

maxjunit
OUTPUT. Highest numbered file unit currently in use by this user.

Discussion

Although normal file unit numbers always start at 1, PRIMOS uses some
negative unit numbers for internal purposes. Therefore, the minimum unit
number can be negative (and is -5 for Revision 20.2).

The numbers returned in minjunit and maxjunit do not imply that all intervening
numbers are currently associated with this (or any other) user. Nor is it possible,
using this call, to determine which of the intervening numbers are or are not in
use by the caller.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-124 Second Edition

WILD$

WILDS

File and Directory Manipulation

Returns a logical value indicating whether a wildcard name was matched.

Usage

DCL WBLD$ ENTRY (CHAR(32) VAR, CHAR(32) VAR, FIXED BIN)
RETURNS (BIT(l) ALIGNED);

didjnatch = (wildname, entryname, code);

Parameters

wildname
INPUT. Wildcard name to match.

entryname
INPUT. Entryname against which to match.

code
OUTPUT. Standard error code.

didjnatch
RETURNED VALUE. Match found if returned value is 1; match not found if
returned value is 0.

Discussion

Matching is done according to standard PRIMOS wildcard matching rules. For a
description of wildcard names, refer to the PRIMOS User's Guide.

It is not necessary for entryname to exist. WILD$$ simply performs a textual
manipulation of the two specified names.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 4-125

WTLIN$

Subroutines Reference II: File System

WTLIN$

Writes a line of characters to a file in compressed ASCII format.

Usage

DCL WTLIN$ ENTRY (FIXED BIN, CHAR(*), FIXED BIN,
FIXED BIN);

CALL WTLIN$ (funit, buffer, count, code);

Parameters

funit
INPUT. File unit on which the file to be written is open for writing.

buffer
INPUT. Array of count halfwords from which the line of characters is to be
written. It should contain two characters per halfword.

count
INPUT. The size of buffer in halfwords.

code
OUTPUT. Standard error code. The following codes are added at Rev. 22.0:

E$ZERO Indicates that the system found and zeroed out an
uninitialized block in a file on a robust partition at runtime.

E$IFCB The disk does not contain enough free contiguous blocks.

Discussion

Information is written on the disk in compressed ASCII format. Multiple blank
characters are replaced by the control character DC1 (221 octal) followed by a
character count. Trailing blanks are removed and the end of record is indicated
by adding a newline character, or a newline character followed by null.

The E$ZERO error can result from improper shutdown of a disk. When a system
halt occurs while a file is being extended logically on a robust partition, not all
data blocks may be written to disk. As a result, there may be uninitialized blocks
in the file. FIX_DISK -FAST will not detect the uninitialized blocks because it
does not check the validity of the data in the file. When the user tries to read the
uninitialized blocks at runtime, PRIMOS determines that the blocks are invalid,

4-126 Second Edition

WTLIN$

File and Directory Manipulation

zeros them, and returns E$ZERO. E$ZERO is returned only the first time that
the block is read or part of the block is written. When an uninitialized block is
detected during a write, the data in the buffer will be written, but any remaining
space in the block will be zeros.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition 4-127

Subroutines Reference II: File System

CAM File Subroutines

The Contiguous Access Method (CAM) is a way to organize files physically on
disk. CAM can provide efficient data retrieval for large database applications.

Structure of CAM Files

A CAM file is stored on disk in groups of blocks known as extents. The blocks
within an extent are contiguous, but the extents themselves are stored wherever
contiguous space is available. Each block in an extent contains 1024 halfwords.
A CAM file's physical end of file (PEOF) is at the end of the last block allocated
to the file.

The maximum number of extents that a CAM file can contain depends on the
master disk revision of PRIMOS. On pre-Rev. 22.1 disk partitions, a CAM file
can contain a maximum of 340 extents. On Rev. 22.1 and later disk partitions, a
CAM file can contain a maximum of 16,381 extents.

On robust partitions, SAM and DAM files are organized physically as CAM
files. However, all files on robust partitions retain the file type attribute (SAM,
DAM, or CAM) specified by the user at file creation. For this reason,
applications that deal only with SAM and/or DAM files can, even on robust
partitions, run without alteration and create and access SAM and DAM files.
System subroutines and commands, such as SRCH$$ and LD, always report the
file type as specified by the user at file creation.

The efficiency with which you can access CAM files increases as extents
become fewer in number and larger in size. For this reason, it is good practice to
monitor large CAM files, using the LEM command. If the LEM command
indicates that the file has a large number of extents, follow these steps to reduce
the number of extents:

1. Use the LCB command to find out whether there is enough free contiguous
space to reduce the number of extents. If there is enough space, copy the
file into a second file, delete the first file, and change the name of the
second file to the original name.

2. Use MAGS AV to save the contents of the partition on tape, remake the
partition, and use MAGRST to restore the contents of the partition.

3. If you do not have time to do step 2, you can use MAGS AV to save the
CAM file or files in question. Then delete the CAM file(s). Use the
MAGRST command to restore the CAM file(s). You can then use the
LEM command to find out whether the file still has a large number of
extents. If it still has a large number of extents, perform step 2.

See the Operator's Guide to File System Maintenance for information about the
LCB command. See the PRIMOS Commands Reference Guide (Rev. 22.0 or
later) for information about the LEM command.

4-128 Second Edition

File and Directory Manipulation

CAM File Extent Maps

For every CAM file, there are one or more extent maps on disk that enable the
system to access the CAM file. A CAM file has one extent map for each 340
extents or fraction of 340. Extent maps contain the following information:

• A header that gives the address of the logical end of the file, the number of
extents in the file, and the file's extent length value. A CAM file's logical
end of file (LEOF) is equivalent to the LEOF of SAM and DAM files.
Allocation size values are discussed below. This information is found only
in the header of the first extent map of a CAM file; headers in any
subsequent extent maps contain zeros.

• A series of entries for individual extents in the file. Each entry indicates
the starting location (beginning record address) of the first record in an
extent, and the number of records in the extent.

The structure of the on-disk extent map is subject to change without notice in
future revisions of PRIMOS. Any changes to the structure of the extent map
data returned by CF$REM will be noted in this chapter.

Creating CAM Files

To create a file specifically as a CAM file, use the subroutine SRCH$$ with the
K$NCAM key. A CAM file is created with 1 extent of 1 block. SRCH$$ also
opens and closes CAM files.

Truncating CAM Files

The subroutine PRWF$$, when called with the K$TRNC key, truncates a CAM
file logically, but does not move the file's PEOF. The subroutine CF$EXT can
truncate a CAM file physically to a specified position. If the specified position is
before the LEOF, CF$EXT sets the LEOF to the PEOF. Physically truncating a
file to its current LEOF can prevent the waste of disk space that occurs when the
PEOF extends beyond the logical end.

Extending CAM Files

The subroutines PRWF$$ and WTLIN$ extend a CAM file by whatever amount
of space is required for the data that is to be added to the file. The user does not
specify the amount of space by which the CAM file is to be extended.

CF$EXT extends a CAM file by the number of blocks that the user specifies in
the call to CF$EXT.

Second Edition 4-129

Subroutines Reference II: File System

Three user options available beginning at Rev. 22.0 affect the way in which the
system extends a CAM file.

Maximum Extent Size: A partition option that specifies the maximum
number of blocks to be added to a CAM file at each allocation, when the CAM
file is larger than the maximum extent size. The default maximum extent size is
256 for robust partitions and 32 for nonrobust partitions. For pre-Rev. 22.0
partitions, the nonrobust partition default applies and cannot be changed by the
user.

Minimum Extent Size: A partition option that specifies the minimum
number of blocks to be allocated in extents added to a CAM file. The default
minimum extent size is 64 for robust partitions and 16 for nonrobust partitions.
For pre-Rev. 22.0 partitions, the nonrobust partition default applies and cannot
be changed by the user.

Allocation Size Value: A CAM file option that specifies the amount of
space added to a CAM file at each allocation. CF$SME sets the allocation size
value to any number of blocks within the range 0 to 32767. A CAM file is
created with an allocation size value of 0.

Note The maximum and minimum extent sizes for all CAM files on a partition are set by
MAKE or FIX_DISK. See the Operator's Guide to File System Maintenance for
information about MAKE and FIX_DISK. The maximum and minimum extent sizes
cannot be set to zero. The minimum extent size can be any value that is less than or equal
to the maximum extent size.

The current setting of the allocation size value determines how PRIMOS
allocates additional space when a user writes beyond the physical end of the file.

• If a CAM file's allocation size value is 0, PRIMOS allocates additional
space equal to the current size of the file, with the result that each
allocation of new space doubles the size of the file. The system first
attempts to add the space to the last extent in the file. If more space is
required than can be added to the last extent, the system allocates an
additional extent. If the amount of additional space requested is greater
than the minimum extent size, the new extent will be at least minimum
extent size. If the number of contiguous blocks available is not greater
than or equal to the minimum extent size, no new extent is allocated, and
the error E$IFCB (insufficient free contiguous blocks) is returned.

• The file continues to be doubled in size with each new request for space
until the file reaches the maximum extent size set for the partition. When
the file reaches the maximum extent size, the file is extended by maximum
extent size with each request for space. Thus, on a partition with the default
maximum extent size of 256 blocks, the number of blocks allocated to a
CAM file by each request would be as follows: 1, 2,4, 8,16,... 256, 512,
768,1024, and so on.

4-130 Second Edition

File and Directory Manipulation

• If a CAM file's allocation size value is greater than 0, PRIMOS first
attempts to add space to the last extent in the file. If more space is required
than can be added to the last extent, an additional extent is allocated. The
total amount of space added at each allocation is equal to the allocation
size value. Note that if the number of contiguous blocks available is not
equal to or greater than the allocation size value, the system adds some
space at the end of the last extent in the file (if any space can be added to
the last extent) and returns the E$IFCB error.

This section describes subroutines that are designed to handle files that have
been created specifically as CAM files. These subroutines are listed in Table
4-1.

Table 4-1. Subroutines for Files Created Specifically as CAM Files

Routine Function

CF$EXT Move a CAM file's physical end of file (PEOF) by a
user-specified number of blocks. If truncating, move the file's
physical end; if the new physical end is before the logical end,
set logical end to physical end.

CF$REM Return information about a CAM file's physical layout on
disk.

CF$SME Set a CAM file's allocation size value.

Second Edition 4-131

CF$EXT

Subroutines Reference II: File System

CF$EXT

Moves a CAM file's physical end of file (PEOF).

Usage

DCL CF$EXT ENTRY (FIXED BIN(15), FIXED BIN(31),
FIXED BIN(31), FIXED BIN(15));

CALL CF$EXT (unit, requested_peof, actual_peof, code);

Parameters

unit
INPUT. The unit on which the file is open.

requestedjpeof
INPUT. The requested new location of the PEOF. The location is expressed
as an offset in halfwords (16 bits) from the beginning of the file.

actual_peof
OUTPUT. The location of the PEOF after the call to CF$EXT has been
completed. The location is expressed as an offset in halfwords from the
beginning of the file.

code
OUTPUT. The standard error code. Possible values are

E$OK The call to CF$EXT was executed without error.

E$WFT The file is not a CAM file.

E$IFCB The disk does not contain enough free contiguous blocks.

E$UNOP The file is not open.

E$IMEM There is not enough memory for the extent map.

E$BPAR There is an invalid input parameter; generally, an invalid
PEOF value.

E$BKIO The file is open for block mode; CF$EXT cannot
truncate it.

4-132 Second Edition

CF$EXT

File and Directory Manipulation

E$EXMF The file cannot be extended because the extent map is full.
At Rev. 22.1, an extent map can contain a maximum of
16,381 entries. On revisions earlier than 22.1, an extent
map can contain a maximum of 340 entries.

Discussion

CF$EXT extends or truncates a file created specifically as a CAM file. To
extend or truncate a file, CF$EXT moves its PEOF. The PEOF is the last block
allocated to the file.

When CF$EXT truncates a CAM file to a location before the logical end of file
(LEOF), it sets the LEOF to the physical end of the file. Note that PRWF$$ can
truncate a file only logically.

Loading and Linking information

The dynamic link for CF$EXT is in PRIMOS.

Effective for PRIMOS Revision 20.0 and subsequent revisions.

Second Edition 4-133

CF$REM

Subroutines Reference II: File System

CF$REM

Returns information about a CAM file's physical layout on disk.

Usage

DCL CF$REM ENTRY (FIXED BIN(15), (*)FIXED BIN(15),
FIXED BIN(15), FIXED BIN(15)
[, FIXED BIN(15)]);

CALL CF$REM (unit, buffer, length, code, [nmap]);

Parameters

unit
INPUT. Unit on which the file is open.

buffer
INPUT. User buffer into which the extent map is to be copied.

length
INPUT. Length of the user buffer, in 16-bit halfwords. The length is stored
as an unsigned integer.

code
OUTPUT. The standard error code. Possible values are

E$OK The call to CF$REM was executed without error.

E$WFT The file is not a CAM file.

E$UNOP The file is not open.

E$BPAR Invalid extent map number is specified in nmap. Either the
number in nmap is negative, or no extent map with that
number exists.

E$BFTS The buffer is too small, and CF$REM did not return the
extent map. Beginning at PRIMOS Rev. 22.1, CF$REM
returns the extent map's header when CF$REM returns
E$BFTS, provided that the user buffer is at least four half-
words long. Specify buffer size in the length parameter
(see above).

4-134 Second Edition

CF$REM

File and Directory Manipulation

nmap
OPTIONAL INPUT. The number of the particular extent map that CF$REM
is to return. If you omit this parameter or specify 0 for it, CF$REM returns the
entire contents of the file's extent map or maps. A CAM file's extent maps
are numbered sequentially, beginning at 1. Thus, the extent maps of a file
with three maps are numbered 1, 2, and 3.

Discussion

CF$REM returns to a user buffer information taken from the on-disk extent map
of a file created specifically as a CAM file. This information describes the CAM
file's physical layout on disk.

The program that calls CF$REM must declare the extent map data structure as
follows:

DCL 1 extent_map,
2 header,

3 leof fixed bin(31),
3 min_ex_len fixed bin(15),
3 nuin_extents fixed bin(15),

2 table(num_extents) ,
3 ex_bra fixed bin(31),
3 ex_len fixed bin(15);

The extent map data structure contains the following data items:

leof
OUTPUT. Logical end of the file (end of data storage), in 16-bit halfwords.

min_ex_len
OUTPUT. Allocation size value, in blocks.

numjextents
OUTPUT. Number of extents in the file.

exjbra
OUTPUT. Physical block address of the first record in the extent (beginning
record address).

exjen
OUTPUT. Length of the extent, in blocks.

Second Edition 4-135

CF$REM

Subroutines Reference H: File System

If the user buffer is not large enough to receive information about all of the
extents of the file, CF$REM returns the error code E$BFTS, and does not return
any information about extents. To correct this error, compute the amount of
buffer required using the formula:

m a p s i z e (in halfwords) = hdr_s ize + (num_extents *
t ab l e_en t ry_s i ze)

where

hdr_size = 4
table_entry_size = 3

num_extents = the value returned by the call to
CF$REM

Then call CF$REM again with length set to the number of halfwords indicated
by this formula.

Note the following changes to CAM files and CF$REM at Rev. 22.1:

• A CAM file can contain a maximum of 16,381 extents.

• A CAM file has one extent map for every 340 extents or fraction of 340. A
file with 340 or fewer extents has only one extent map, which contains a
header and information about the extents in the file. If a CAM file has
more than one extent map, the first extent map contains the header,
followed by information about the first 340 extents in the file. Each
subsequent extent map contains a header filled with zeros followed by
information about individual extents.

• CF$REM returns the extent map header when E$BFTS is reported,
provided that you have allocated at least four halfwords for the user buffer.
For this reason, it is good practice to specify a buffer size of at least four
halfwords in your call to CF$REM.

At Rev. 22.1 and later revisions, it is good practice initially to call CF$REM to
return the first or only extent map of a file. The header information in the first
map enables you to determine whether the file has more than one extent map. If
necessary, you can then call CF$REM again to access other extent maps by
number.

Loading and Linking Information

The dynamic link for CF$REM is in PRIMOS.

Effective for PRIMOS Revision 20.0 and subsequent revisions.

4-136 Second Edition

CF$SME

CF$SME

File and Directory Manipulation

Sets the allocation size value of a CAM file.

Usage

DCL CF$SME ENTRY (FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15));

CALL CF$SME (unit, ext_length_val, code);

Parameters

unit
INPUT. The unit on which the file is open.

ext_lengih_val
INPUT. The new allocation size value for this file.

code
OUTPUT. The standard error code. Possible values are

E$OK The call to CF$SME was executed without error.

E$WFT The file is not a CAM file.

E$UNOP The file is not open.

E$BPAR There is an invalid input parameter.

Discussion

CF$SME sets the allocation size value of a particular file that was created
specifically as a CAM (Contiguous Access Method) file. The allocation size
value is the number of blocks to be allocated to a file when additional space is
required. OF$SME can be called to modify the allocation size value at any time
after the file has been created, provided that the file unit is open for write access.
CF$SME cannot change the default minimum extent size of a partition.

The appropriate allocation size value to set for a file depends on how the file is
used and the partition's default maximum and minimum extent size values. For a
small file, the partition defaults may be too large. A large file may require a
larger allocation size value than the partition default to ensure that enough space
is allocated for the file.

Second Edition 4-137

CF$SME

Subroutines Reference II: File System

For example, suppose you want to create a file that has 100,000 blocks on a
partition that has the default minimum extent size (64 blocks) and maximum
extent size (256 blocks). Given the maximum extent size, you may not be able
to create a file that large unless the disk is relatively clean. However, by using
CF$SME to set the file's allocation size value to 1000 blocks, you increase the
amount of space that can be added to the file at each allocation. Increasing the
file's allocation size value in this way makes it less likely that the limit on the
number of extents per CAM file will prevent you from creating your file on this
partition.

Loading and Linking Information

The dynamic link for CF$SME is in PRIMOS.

Effective for PRIMOS Revision 20.0 and subsequent revisions.

4-138 Second Edition

EPF Management

5

This chapter describes the group of subroutines that support the PRIMOS
Executable Program Format (EPF) mechanism. EPFs and their operation are
described in detail in the Advanced Programmer's Guide I: BIND and EPFs;
how to create them and make them accessible for execution is described in the
Programmer's Guide to BIND and EPFs.

EPF execution consists of allocating virtual memory space in which the EPF can
run and store its data; mapping the EPF to virtual memory; initializing the EP3's
linkage areas; and finally, invoking, or starting the execution of, the EPF.
Subroutines are provided to perform each of these functions separately.

Also provided is a subroutine that combines, in a single call, all of the above
functions, as well as subroutines used for housekeeping of EPFs and their virtual
memory segments.

Rev. 23.0 and later versions of PRIMOS make registered EPFs available to the
user. The registration of EPFs offer the following advantages:

• Shared linkage, thus reducing the system working set

• Pre-snapped dynamic links, reducing execution time

• Faster initialization of per-user data, reducing startup time

Registered EPFs are maintained in shared address space and are listed in a
special registered EPF database. When the System Administrator registers an
EPF, PRIMOS automatically allocates space for it from the available shared
dynamic segments. PRIMOS also carries out many dynamic linking and
initialization tasks at registration time.

Registered EPFs are especially useful for programs and libraries that are widely
used on a system. As a result of the reduced initialization and linking overhead,
registered EPFs can be more efficient than nonregistered EPFs for many
applications. Because at least part of a registered EPF is mapped to shared
memory, registered EPFs occupy less space in the user's private address space.

For a more detailed description of how registered EPFs function, see the
Advanced Programmer's Guide I: BIND and EPFs.

Second Edition 5-1

Subroutines Reference II: File System

The following subroutines, their declarations, and their calling sequences are
described in this chapter:

EPF$ALLC Perform the linkage allocation phase for an EPF.

EPF$CPF Return the state of the command processing flags in an EPF.

EPF$DEL Deactivate the most recent invocation of a specified EPF.

EPF$INIT Perform the linkage initialization phase for an EPF.

EPF$INVK Initiate the execution of a program EPF.

EPF$ISREADY Indicate that a given registered EPF is ready or suspended.

EPF$MAP Map the procedure images of an EPF file into virtual

memory.

EPF$REG Register an EPF in the appropriate registered database.

EPF$RUN Combine functions of EPF$ALLC, EPF$MAP, EPF$INIT,

and EPF$INVK.

EPFSUREG Unregister an EPF by removing it from its address space.

LN$SET Modify a user's search rules to allow dynamic linking to a

library EPF.

REMEPF$ Remove an EPF from a user's address space.

RPL$ Replace one EPF runfile with another.

5-2 Second Edition

EPF$ALLC

EPF Management

(F EPF$ALLC
EPF$AL

Performs the linkage allocation phase for an EPF.

Usage

DCL EPF$ALLC ENTRY (PTR OPTIONS (SHORT), FIXED BIN);

CALL EPF$ALLC (epfjd, code);

Parameters

epfjd
INPUT. The identifier of the mapped-in EPF (created by EPF$MAP).

code
OUTPUT. Standard error code. Possible values are

E$BPAR An invalid epfjd has been passed as a parameter, probably
indicating that the EPF was not successfully mapped into
memory by EPF$MAP.

E$ILTD An invalid EPF Linkage Table Directory (LTD) linkage
descriptor type has been found within the EPF file.
Resubmit the file to BIND.

E$EPFT An invalid EPF type field was detected when trying to
allocate storage. Resubmit the file to BIND.

Discussion

The EPF$ALLC call allocates storage for the linkage and static data areas of an
EPF. All the template information for the storage needs is contained within the
EPF file itself.

Memory storage is allocated from temporary segments in the dynamic segment
range. EPFs are allocated static data and linkage area space in process-class
storage. All storage is managed by PRIMOS.

Refer to the Advanced Programmer's Guide I: BIND and EPFs for a discussion
of storage classes.

Second Edition 5-3

EPF$ALLC

Subroutines Reference II: File System

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

5-4 Second Edition

EPF$CPF

EPF Management

EPF$CPF
EPF$CP

Returns the state of the command processing flags in an EPF.

Usage

DCL EPF$CPF ENTRY (PTR OPTIONS (SHORT),
1,2,3BIT(1),

3 BIT(l),
3 BIT(l),
3 BIT(l),
3 BIT(4),
3,4BIT(1),

4 BIT(l),
4 BIT(l),
4 BIT(l),
4 BIT(l),

3 BIT(7),
2 FIXED BIN(15),

FIXED BIN(15));

CALL EPF$CPF (epfjd, epfjnfo, code);

Parameters

epfjd
INPUT. The identifier of the mapped-in EPF.

epfjnfo
OUTPUT. The structure that is to contain the EPF command processing
features. The structure is described below.

code
OUTPUT. Standard error code. Possible value is

E$BPAR An undefined value of epf id was passed as a parameter,
probably indicating that the EPF was not successfully
mapped into memory by EPF$MAP

Second Edition 5-5

EPF$CPF

Subroutines Reference II: File System

Discussion

The command processing features that the EPF can invoke are set during the
execution of the EPF linker, BIND.

The structure in which the invokeable features are returned is shown below.
Refer to the Advanced Programmer's Guide III: Command Environment for
explanations of each bit.

DCL 1 epf_info based,
2 comrnand_flags,

3 wildcards bit(l),
3 treewalks bit(l),
3 iteration bit(l),
3 verify bit(1),
3 reserved bit (4),
3 file_types,

4 file bit(1),
4 directory bit(l),
4 segdir bit (1),
4 acat bit(1),
4 rbf bit(1),
4 reserved bit(7),

2 name_generation_position fixed bin (15);

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

5-6 Second Edition

EPF$DEL

EPF Management

EPF$DEL
EPF$DL

Deactivates the most recent invocation of a specified EPF.

Usage

DCL EPF$DEL ENTRY (PTR OPTIONS (SHORT), FIXED BIN(15));

CALL EPF$DEL (epfjd, code);

Parameters

epfjd
INPUT. The identifying number of the EPF to be deactivated. This number is
supplied by the EPF$MAP subroutine (described later in this chapter).

code
OUTPUT. Standard error code. Possible values are

E$BPAR An undefined epfid has been passed as a parameter,
probably indicating that the EPF was not successfully
mapped into memory by EPF$MAP.

E$EPFT An invalid EPF type field was detected. Resubmit the file
to BIND.

E$B VER An invalid EPF version was detected. Resubmit the file to
BIND.

E$SWPR An attempt was made to delete an EPF that is suspended in
the calling process.

Discussion

The EPF$DEL subroutine deactivates one invocation of an EPF for the calling
process. The segment(s) used for linkage and static data for the most recent
invocation of the EPF are returned to the free pool of dynamic segments. If this
EPF has not been previously executed by a call to EPF$INVK, the EPF
procedure segment(s) are released, and the storage used by the in-memory EPF
database is released.

The invocation of an EPF uses valuable system resources. Each invocation of an
EPF program should be followed by a call to EPF$DEL to free the storage

Second Edition 5-7

EPF$DEL

Subroutines Reference II: File System

allocated for program linkage and static storage, unless the EPF is to be invoked
again in a relatively short time.

If the EPF invocation is not terminated by a call to EPF$DEL, system segments
are not returned to the free segment pool, and a user may eventually run out of
segments in the dynamic segment range.

If an error occurs while attempting to return EPF procedure segments to the
system, the message

Unable to free EPF procedure segments

is displayed, and the user's command environment is reinitialized.

Any error detected while deallocating storage causes an appropriate error
message to be displayed at the user's terminal and the user's command
environment to be reinitialized.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

5-8 Second Edition

EPF$INIT

EPF Management

EPF$INIT
EPF$NT

Performs the linkage initialization phase for an EPF.

Usage

DCL EPF$INIT ENTRY (FIXED BIN(15),PTR OPTIONS (SHORT),
FIXED BIN(15));

CALL EPF$INIT (key, epfjd, code);

Parameters

key
INPUT. Specifies the action to be performed. Possible values are

K$INITALL Specifies complete initialization of data areas.
(K$INAL
for FTN callers)

K$REINIT Specifies reinitialization of only the data areas. EPF$INIT
(K$REIN for reinitializes only the static data and faulted indirect
FTN callers) pointers (IPs), but maintains other data such as resolved

IPs and entry control blocks.

epfjd
INPUT. The identifier of the mapped-in EPF (supplied by EPF$MAP,
described later in this chapter).

code
OUTPUT. Standard error code. Possible values are

E$B ARG Linkage and static data areas for the EPF were not
allocated. Call EPF$ALLC before calling EPF$INIT.

E$BKEY An invalid key was used in the call, probably an attempt to
reinitialize before a complete initialization was done.

E$ILTE An invalid EPF Linkage Table Entry (LTE) linkage
descriptor type has been found within the EPF file.
Resubmit the file to BIND.

E$ILTD An invalid EPF LTD linkage descriptor type has been
found within the EPF file. Resubmit the file to BIND.

Second Edition 5-9

EPF$INIT

Subroutines Reference II: File System

E$BPAR An undefined epfid has been passed as a parameter,
probably indicating that the EPF was not successfully
mapped into memory by EPF$MAR

E$BVER An invalid EPF version was detected. Resubmit the file to
BIND.

E$EPFT An invalid EPF type Field was detected when trying to
allocate storage. Resubmit the file to BIND.

Discussion

The EPF must already be mapped to memory (by EPF$MAP), with its static data
areas already allocated (by EPF$ALLC).

The EPF$INIT call must be made with a key value of K$INITALL before any
call is made with a key value of K$REINIT; that is, a complete initialization of a
mapped and allocated EPF must have been performed at least once before a
reinitialization can be done.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

5-10 Second Edition

EPF$INVK

EPF Management

EPF$INVK
EPF$VK

Initiates the execution of a program EPF.

Usage

DCL EPF$INVK ENTRY (PTR OPTIONS (SHORT), FIXED BIN(IS));

CALL EPF$INVK (epfjd, code);
(or)

DCL EPF$INVK ENTRY (PTR OPTIONS (SHORT), FIXED BIN(15),
CHAR(1024) VAR, FIXED BIN(15),
1,2 CHAR(32) VAR,

2 FIXED BIN(15),
2 PTR OPTIONS (SHORT),
2,3 FIXED BIN(31),

3 FIXED BIN(31),
3 FIXED BIN(31),
3 FIXED BIN(31),
3 BIT(l),
3 BIT(l),
3 BIT(l),
3 BIT(l),
3 BIT(l),
3 BIT(ll),
3 BIT(l),
3 BIT(l),
3 BIT(14),
3 FIXED BIN(15),
3 HXED BIN(IS),
3 BIT(l),
3 BIT(l),
3 BIT(l),
3 BIT(13),
3 FIXED BIN(31),
3 HXED BIN(31),
3 FIXED BIN(31),
3 FIXED BIN(31),

1,2BIT(1),
2 BIT(l),
2 BIT(14),

PTR);

CALL EPF$INVK {epfjd, code, comjargs, retjcode, comjstate, flags,
rtn Junction _ptr);

Second Edition 5~ 11

EPF$INVK

Subroutines Reference II: File System

Parameters

epfjd
INPUT. The identifier of the EPF (supplied by EPF$M AP, described later in
this chapter).

code
OUTPUT. Standard error code. Possible values are

E$BPAR Undefined identifier of the EPF has been passed as a
parameter, probably indicating that the EPF was not
successfully mapped into memory by EPF$MAP.

E$EPFT An invalid EPF type field was detected. Resubmit the EPF
to BIND.

E$B VER An invalid EPF version was detected. Resubmit the EPF
to BIND.

comjargs
INPUT. Arguments to the invoked EPF.

ret_code
OUTPUT. Return code from execution of the invoked EPF. Any standard
error code generated during program execution may be returned. Refer to the
Advanced Programmer's Guide HI: Command Environment for a complete
list.

com_state
INPUT. Contains information relative to the EPF invocation. The format is
described in the Discussion section.

flags
INPUT. Contains information relative to the command function invocation.
The format is described in the Discussion section.

rtn Junction _ptr
OUTPUT. Pointer to a return function structure used by an EPF acting as a
function. The format is described in the Discussion section.

Discussion

Program EPFs written as programs (that is, expecting no command arguments
and returning no error code) are normally invoked with the first calling sequence
shown in the Usage section above. Program EPFs written as functions, and
those expecting arguments, must be invoked using the second calling sequence.

5-12 Second Edition

EPF$INVK

EPF Management

The additional arguments are provided for passing invocation information to the
program being invoked, and for returning data to the invoking program.

The Advanced Programmer's Guide I: BIND and EPFs contains a full
description of the ways in which EPFs can be invoked from within other
programs.

Before the EPF$INVK call is made, the EPF must have been mapped into virtual
memory and the static data areas must be both allocated and initialized. The
required order of calls is EPFMAP, EPFALLC, EPF$INIT, and EPF$INVK.

The address of the starting Entry Control Block (ECB) for the EPF is found from
the Control Information Block (CIB) within the EPF, and the EPF is invoked by
issuing a PCL instruction to the ECB.

The calling program supplies in comstate information required by the invoked
EPF when it expects arguments or when it is called as a function. The format of
comstate is shown below.

DCL 1 com_state,
2 com_name char(32) var,
2 version fixed bin(15),
2 vcb_ptr ptr,
2 reserved_l fixed bin(15),
2 cp_iter_info,

3 mod_after_date fixed bin(31),
3 mod_before_date fixed bin(31),
3 bk_after_date fixed bin(31),
3 bk_before_date fixed bin(31),
3 type_dir bit(l),
3 type_segd bit(l),
3 type_file bit(1),
3 type_acat bit(l),
3 type_rbf bit(1),
3 reserved_2 bit(11),
3 verify_sw bit(l),
3 botup_sw bit(l),
3 reserved_3 bit(14),
3 walk_from fixed bin(15),
3 walk_to fixed bin(15),
3 in_iteration bit(l),
3 in_wildcard bit(l),
3 in_treewalk bit(l),
3 reserved_4 bit(13),
3 createdafterdate fixed bin(31),
3 created_before_date fixed bin(31),
3 accessed_after_date fixed bin(31),
3 accessed before date fixed bin (31);

Second Edition 5-13

EPF$1NVK

Subroutines Reference II: File System

The level-2 fields in the previous calling program have the following meanings:

com name Name of the EPF command.

version Version of the com_state structure, set to either 0 or 1; 0
signals that only these first two fields have defined values,
while 1 signals that all four of these are defined and provided
by the caller.

vcb_ptr Pointer to local CPL variables allocated during the execution
of a CPL program. This field is null () if there is no invoking
CPL program.

cpiterjnfo Information relative to the extended command processing
features for the command. This information is passed to the
invoked EPF from the calling program. The last four date
fields are valid only at Rev. 20.0 and later.

The flags argument informs the called EPF that it is being called as a function,
and that it is expected to return a function value; it has the following format:

1 flags,
2 command_function_call bit(l),
2 no_eval_vbl_fens bit(l),
2 reserved bit (14);

The first bit, if set, indicates that the program was called as a command function;
the remaining fifteen bits are undefined. The format of the structure pointed to
by the rtnjcnstruc pointer is

1 rtn_fcn_struc,
2 version fixed bin (15),
2 value_str char (*) var;

The version must be set to zero by the called EPF. The memory space for this
data will have been allocated by the EPF. The caller uses this data and later
deallocates the memory space using FRE$RA.

Loading and Linking information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

5-14 Second Edition

EPF$ISREADY

EPF$ISREADY

EPF Management

Returns information on whether a registered EPF is ready or suspended.

Usage

DCL EPF$ISREADY ENTRY (CHAR(32) VAR, FIXED BIN(IS),
FIXED BIN(15), BIT(l) ALIGNED, FIXED BIN(15));

CALL EPF$ISREADY (epfname, epf_database, epfjevel, ready Jlag,
status);

Parameters

epfname
INPUT The name of the registered EPF to be checked.

epfjiatabase
INPUT The database to be checked. Currently, only K$PUBLIC is a valid
database.

epfjevel
INPUT A number indicating how far down the EPF Information Table (EIT)
chain to search. This allows the user to check the status of any version of the
registered EPF. There is no limit on the number of versions of the same EPF
that can be registered at the same time.

ready Jlag
OUTPUT. This flag is set to true if the EPF is ready.

status
OUTPUT. Standard error code.

Discussion

The EPF$ISREADY subroutine retrieves a name block pointer for the specified
EPF and follows the EPF Information Table (EIT) chain until the proper EPF is
located. It then sets return Jlag dependent on the state of the EPF.

Second Edition 5-15

EPF$ISREADY

Subroutines Reference II: File System

Loading and Linking Information

V-mode and I-mode: No special action.

Effective for PRIMOS Rev. 23.0 and subsequent revisions.

5-16 Second Edition

EPF$MAP

EPF Management

EPF$MAP
EPF$MP

Maps the procedure images of an EPF file into virtual memory.

Usage

DCL EPF$MAP ENTRY (FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15), FIXED BIN(15)) RETURNS

(PTR OPTIONS (SHORT));

epf_id = EPF$MAP (key, unit, access_rights, code);

Parameters

key
INPUT. Segment mapping options. Possible values are

K$ANY Use any available segment(s).

K$COPY Copy the segment-image(s) of the file into temporary
segment(s). DBG uses this option to obtain writable
segment(s) for debugging.

K$DBG Map DBG information. Used only by DBG, this causes
the segment-image(s) of the EPF file that contain the DBG
information to be mapped into memory.

unit
INPUT. The file unit on which the EPF is currently open for VMFA-read.

accessjights
INPUT. The access rights to place on the VMFA segments. Possible values

are

K$R

K$RX

Read only access on segment

Read/execute access

Currently, K$R gives only read access; it does not permit execution. K$RX
give execution access and also implies read access. Use K$RX to be assured
of future compatibility.

code
OUTPUT. Standard error code. See the Discussion section.

Second Edition 5-17

EPF$MAP

Subroutines Reference II: File System

epffjd
RETURNED VALUE. The identifier of the mapped-in EPF. This identifies
the in-memory EPF when calling other EPF$ subroutines. If an error is
returned to the caller, epfid is undefined.

Discussion

The EPF$MAP subroutine is called to perform the map-to-memory function of
the EPF mechanism. The EPF file must already have been opened for
VMFA-read on a file unit; that is, you must first call either SRCH$$ or SRSFX$
with the K$VMR key specified. Refer to Chapter 4 for descriptions of these
subroutines.

If the EPF file in question is to be used as a program (rather than a library), then
this routine is the first of four subroutines that must be called in this order:
EPFMAP, EPFALLC, EPF$INIT, EPF$INVK. Refer to the Advanced
Programmer's Guide III: Command Environment for more information on
program and library EPFs.

The EPF must be mapped to memory in order to be executed. The user code that
calls EPF$MAP or EPF$RUN (described later in this chapter) should be capable
of dealing with any error condition that might result when the EPF is invoked.

If an error occurs while attempting to allocate dynamic memory space for the
EPF or if the user's command environment becomes corrupted, an error message
will be displayed at the users's terminal and the user's command environment
will be reinitialized.

If an error occurs during some manipulation of the in-memory list of EPFs (for
example, a circular list is detected), an error message is displayed and the user's
command environment is reinitialized.

The following error codes may be returned to the caller of EPF$MAP;

Error Code Meaning

E$NMVS Insufficient VMFA segments available for EPF mapping.
Caller must either wait until some VMFA segments are
returned to the free pool, (by this user or by others), or
request that the system be reconfigured to allow the caller
more VMFA segments.

E$NMTS Insufficient user segments for copying EPF to memory from a
remote node or using the K$COPY key.

E$ROOM Insufficient dynamic storage is available.

5-18 Second Edition

EPF$MAP

EPF Management

Note In response to any of these three messages, the user can release temporary segments by

• Reentering a suspended subsystem via the REENTER command

• Deactivating previous EPF invocations via the REMEPF command

• Releasing command levels via the RELEASE_LEVEL command

• Reinitializing the command environment via the ICE command (as a last resort)

Error Code Meaning (continued)

E$NRIT User has insufficient access rights to the EPF file.

ESBKEY Invalid key value was specified for EPF$MAP.

E$BUNT The specified unit number is invalid.

E$UNOP File no longer open on specified file unit.

E$NDAM EPF file is not a DAM file, as it must be.

E$NOVA EPF file is not open for VMFA-read, as it must be.

E$FIUS EPF file is currently open for use. The EPF file cannot be
mapped, probably because it is currently open on a file unit
for writing by this or another user.

E$BDAM EPF DAM file structure has been corrupted.

E$IVWN EPF file contents have been corrupted.

E$EPFT Invalid EPF type was detected. Resubmit the file to BIND.

E$BVER Invalid EPF version was detected. Resubmit the file to BIND.

E$EPFL EPF too large to be mapped to memory. EPF$MAP will
return this error if the EPF consists of more than 130
procedure segments.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 5-19

EPF$REG

Subroutines Reference II: File System

EPF$REG

Enables registration of EPFs by opening the specified file, mapping it to
memory, allocating linkage segments, initializing the linkage segments, and
registering the EPF in the appropriate registered database.

Usage

DCL EPF$REG ENTRY (PTR, FIXED BIN(15));

CALL EPF$REF {registerJnfojptr, status);

Parameters

register_info_ptr
INPUT. A structure describing the EPF to be registered.

status
OUTPUT. Standard error code.

Discussion

The structure of the returned register info entry is

DCL 1 r e g i s t e r _ i n f o ,
2 pathname CHAR(128) VAR,
2 i n i t _ c o m l i n e CHAR(1024) VAR,
2 e p f _ d a t a b a s e FIXED B I N (1 5) ,
2 d e p e n d e n c y _ l i s t _ p t r CHAR(32) VAR,
2 p r i o r i t y _ s e a r c h _ l i s t _ p t r CHAR(32) VAR,
2 i d l CHAR(32) VAR;

pathname
INPUT. The pathname of the EPF to be registered.

initjcomline
INPUT. The command line for the initialization routine.

5-20 Second Edition

EPF$REG

EPF Management

epf_database
INPUT. The database in which the EPF is to be registered. Possible value is

K$PUBLIC Registered nonsystem class database for ring 3 EPFs.

dependency_Ust_ptr
INPUT. A pointer to an array of EPF names on which the specified EPF is
dependent. These EPFs must be registered when the specified EPF is
registered so that it is ready to be executed.

priority_search_list_ptr
INPUT. A pointer to an array of EPF names. During dynamic linking, these
EPFs are searched before the libraries described within the search list.

idl
INPUT. A pointer to an array of EPF names. This array defines the order in
which to invoke initial entry ECBs. This can be used to force the order of
initialization.

EPF entries in the epf dependency_list are placed in the Reference Linkage
Table (RLT). If any of these EPFs does not exist, no attempt is made to snap the
links for the EPF being registered.

If the priority searchjist is not null, the search rules are updated. This forces
the linking mechanism to search the given EPFs within the priority searchjist
before scanning the defined search rules. At the end of the initialization, the
search rules are reset.

EPF$REG must scan the epf_database to complete initialization of suspended
EPFs which may become ready upon registration of the current EPF. This
subroutine makes calls to other subroutines to resolve as many references as
possible for currently suspended EPFs.

Loading and Unking Information

V-mode and I-mode: No special action.

Effective for PRIMOS Rev. 23.0 and subsequent revisions.

Second Edition 5-21

EPF$RUN

Subroutines Reference II: File System

EPF$RUN
EPF$RN

Combines functions of EPF$ALLC, EPF$MAP, EPF$INIT, and EPF$INVK.

Usage

DCL EPF$RUN ENTRY (FIXED BIN (15), FIXED BIN (15),
FIXED BIN (15))
RETURNS (PTR OPTIONS (SHORT));

epfjd = EPF$RUN (key, unit, code);

(or)

DCL EPF$RUN ENTRY (FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15), CHAR(1024) VAR, FIXED BIN(15),
1,2 CHAR(32) VAR,

2FIXEDBIN(15),
2 PTR,
2,3 FIXED BIN(31),

3 FIXED BIN(31),
3 FIXED BIN(31),
3 FIXED BIN(31),
3 BIT(l),
3 BIT(l),
3 BIT(l),
3 BIT(l),
3 BIT(l),
3 BIT(ll),
3 BIT(l),
3 BIT(15),
3 FIXED BIN(15),
3 FIXED BIN(15),
3 BIT(l),
3 BIT(l),
3 BIT(l),
3 BIT(13),

1,2BIT(1),
2 BIT(l),
2 BIT(14),

PTR)
RETURNS (PTR OPTIONS (SHORT));

epfjd = EPF$RUN (key, unit, code, comjargs, retjcode, com_state, flags,
rtnjfunction_ptr)\

5-22 Second Edition

EPF$RUN

EPF Management

Parameters

key
INPUT. Specifies action to be performed. Possible values are

K$INVK Map, create, allocate, and initialize static data
areas, and leave EPF in cache upon completion.

K$INVK_DEL
(K$IVD for FTN callers) Map, allocate, and initialize static data areas,

invoke but do not cache EPF after completion.
K$REST Map, allocate, and initialize static data areas, but

do not invoke the EPF.

unit
INPUT. File unit on which the EPF is open for VMFA-read.

code
OUTPUT. Standard error code. Possible values include all error codes
returned by EPFMAP, EPFALLC, EPF$INIT, or EPF$DEL.

comjargs
INPUT. The command arguments.

ret_code
OUTPUT. Error code returned by invoked EPF.

com_state
INPUT. Contains information relative to the EPF invocation. See the
EPF$INVK subroutine, described earlier in this chapter.

flags
INPUT. This field contains information relative to the command function
invocation. See the EPF$INVK subroutine.

rtnjunction _ptr
OUTPUT. Pointer to a return structure used by the EPF when called as a
function. See the EPF$INVK subroutine.

epfjd
RETURNED VALUE. The identifier for the EPF created by a call to
EPF$MAP from the EPF$RUN subroutine. If the EPF is deleted after its
invocation completes, the epfjd is undefined.

Second Edition 5-23

EPF$RUN

Subroutines Reference II: File System

Discussion

This subroutine performs all the appropriate calls to execute an EPF file. It maps
and allocates the linkage and static data areas, initializes them, invokes the EPF,
and optionally returns the EPF memory resources to the system free pool. The
EPF file must first be opened for a VMFA-read; that is, you first must call either
SRCH$$ or SRSFX$ with the K$VMR key specified.

Program EPFs written as programs (that is, they expect no command arguments
and return no severity code) are normally invoked with the first calling sequence
shown above. EPFs written as functions, and those expecting arguments, must be
invoked using the second calling sequence. The additional arguments are
provided for passing invocation information to the program being invoked, and
for returning data to the invoking program.

Refer to the Advanced Programmer's Guide III: Command Environment for a
full discussion of how to call EPFs from within other programs.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

^ >

5-24 Second Edition

EPF$UREG

EPF Management

EPF$UREG

Enables unregistration of an EPF by removing it from its address space. This
subroutine decrements the user count and unregisters the EPF if the caller is the
last to use an old version of the EPF.

Usage

DCL EPF$UREG ENTRY (FIXED BIN(15), CHAR(32) VAR,
POINTER OPTIONS (SHORT), FIXED BIN(15),
FIXED BIN(15), FIXED BIN(15));

CALL EPF$UREG (removeJcey, epf_pathname, epf_smt, first_proc_seg,
epfjiatabase, status);

Parameters

remove Jcey
INPUT. Specifies the action to be performed. Possible values are

K$DUCT Decrements the user-count on this EPF. This key is used
only when the local Segment Mapping Table (SMT) of a
registered EPF is being removed and the UNREGISTER_
EPF command is not used.

K$UNREG Removes the entry from the EPF namespace. With this
key, the associated segments for procedure and per-user
linkage areas are released.

epf_pathname
INPUT. The pathname of the EPF to be unregistered. If epf_pathname is a
publicly registered EPF, epf_pathname is a file entry only.

epf_smt
INPUT. The local SMT pointer, which is passed by REMEPF_ if the
REMEPF command is used. If the call is made from a user's program, this
pointer must be either null or a valid SMT pointer.

first_proc_seg
INPUT. The first procedure segment number of the EPF. Each different
version of an EPF can be uniquely identified by its first procedure segment.
Use the LIST_REGISTERED_EPF command to display the first procedure
segment number of an EPF.

Second Edition 5-25

EPF$UREG

Subroutines Reference II: File System

epf_database
INPUT. The database in which the EPF was registered. Possible value is

K$PUBLIC Registered nonsystem class database for ring 3 EPFs.

status
OUTPUT. The status of the remove operation.

Discussion

This subroutine removes the specified registered EPF from the registered EPF
database without having to unregister any other EPFs that may be linked to the
EPF in question.

Loading and Linking Information

V-mode and I-mode: No special action required.

Effective for PRIMOS Rev. 23.0 and subsequent revisions.

5-26 Second Edition

LN$SET

EPF Management

LN$SET

Modifies a user's search rules and other data structures to allow dynamic linking
to a library EPF.

Usage

DCL LN$SET ENTRY (POINTER OPTIONS (SHORT),
FIXED BIN(15));

CALL LN$SET (smtp, code);

Parameters

smtp
INPUT. A pointer to a segment mapping table for a given EPF library.

code
OUTPUT. The status code. Possible values are

E$OK The call to LN$SET was completed successfully.

E$BPAR Null SMTP.

E$BVER EPF is not a library

E$BDAT There are no entries in the library.

E$NDAT The EPF has no library information.

E$NINF No search rule was found for this library.

Discussion

LN$SET modifies a user's search rules and other data structures so that a library
EPF that has been mapped-in by the Source Level Debugger (DBG) can be
linked dynamically.

LN$SET tries to place into its caller's entrypoint search list the identifier for the
library to be debugged. This identifier is the segment mapping table pointer
(SMTP). LN$SET first verifies that the passed SMTP is valid and points to a
mapped-in library. Then it searches the user's current entrypoint search list for
an entry corresponding to the name of this library. If an entry is found, then the
SMTP is inserted into the list. If not, then an error is returned.

The SMTP is obtained when DBG (or some other program) calls EPF$MAP to
bring the library into memory. The SMTP is returned by EPF$MAP

Second Edition 5-27

LN$SET

Subroutines Reference II: File System ?

Loading and Linking Information

The dynamic link for LN$SET is in PRIMOS.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

5-28 Second Edition

REMEPF$

REMEPF$

EPF Management

Removes an EPF from a user's address space.

Usage

DCL REMEPF$ ENTRY (FIXED BINQ5), CHAR(*) VAR,
FIXED BIN(15));

CALL REMEPF$ (key, epfjreename, code);

Parameters

key
INPUT. Force-delete indicator. Possible values are

K$FRC_DEL
(K$FRDL for FTN callers) Forcibly remove if process-class library EPF is

initialized.
K$NO_FRC_DEL

(K$DL for FTN callers) Do not forcibly remove if process-class library
EPF is initialized.

epfjreename
INPUT. Pathname of the EPF to be removed.

code
OUTPUT. Standard error code. Possible values are

E$BPAR Invalid key specified.

E$NTA EPF not active for this user.

E$SWPR EPF suspended in this user's process.

E$ILTE Invalid EPF LTE linkage descriptor.

E$ILTD Invalid EPF LTD linkage descriptor.

Discussion

The REMEPFS call removes either a program EPF or a library EPF from the
user's address space. If the EPF is a process-class library EPF, all existing links
to it from other process-class library EPFs are unsnapped.

Second Edition 5-29

REMEPF$

Subroutines Reference II: File System

The EPF to be removed must have a name that ends in either the .RUN or the
.RP/i suffix, where n is a decimal digit. Refer to the RPL$ subroutine, later in
this chapter, for a discussion of the use of the RPn convention.

Several error conditions internal to EPF handling may result in the display to the
user's terminal of error messages other than the standard PRIMOS messages
given above. These errors are all considered fatal to any further processing, and
result in reinitialization of the user's command environment.

Loading and Linking information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

5-30 Second Edition

RPL$

RPL$

EPF Management

Replaces one EPF runfile with another.

Usage

DCL RPL$ ENTRY (CHAR(128) VAR, CHAR(128) VAR,
CHAR(128) VAR, BIT(l) ALIGNED,
FIXED BIN(15));

CALL RPL$ (sourcejpath, target_pathy rpl_path, no_query, code);

Parameters

source_path
INPUT. Pathname of the file containing the code to be used in the new .RUN
file.

target_path
INPUT. Pathname of the new .RUN file

rpljmth
OUTPUT. Pathname of the old .RUN file, which is now a .RPA file if it is
currently in use; otherwise, a null string.

nojquery
INPUT. If this bit is set, no query for changing the filename will prompt the
user, and no messages are displayed. If it is unspecified by the user, the
routine defaults to query displays.

code
OUTPUT. Standard error code. Possible values are

-1 Returned as a warning if at least one RPn file exists and is
not in use.

Other standard error codes may be returned from
subroutines called internally by RPL$. Refer to the
Advanced Programmer's Guide III: Command
Environment for explanations of these codes if they should
be returned.

Second Edition 5-31

RPL$

Subroutines Reference II: File System

Discussion

The RPL$ subroutine allows the replacement of one EPF file with another one.
By definition, therefore, the file to be replaced must be a DAM file with the
suffix .RUN. If the file to be replaced is currently in use (such as an EPF library
being accessed by users), it remains in use but has its suffix changed from .RUN
to .RPn, where n is a decimal integer from 0 through 9. RPL$ replaces the old
EPF file with this new .RUN file, but the .RPn file continues to exist. Users who
try to access the new EPF file are linked to the new .RUN file; they may later
delete or save the old version.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

5-32 Second Edition

Command Environment

6

User programs written in any language can make extensive use of the facilities
provided by the PRIMOS command processor, including the ability to call other
programs from within executing programs, to set and retrieve local and global
variables, and to retrieve some of the characteristics of the user's command
environment.

This chapter describes the group of subroutines that support user programs in
their interaction with the PRIMOS command environment. Additional
information on programming for the use of the command processor facilities can
be found in the Advanced Programmer's Guide III: Command Environment.

The following subroutines, their declarations, and their calling sequences are
described in this chapter:

CE$BRD Return caller's maximum command environment breadth.

CE$DPT Return caller's maximum command environment depth.

CL$PIX Parse command arguments according to a character string

"picture" of the command line.

CP$ Invoke a command from a running program.

GV$GET Retrieve the value of a global variable.

GV$SET Set the value of a global variable.

LIST$CMD Return a list of commands valid at mini-command level.

LV$GET Retrieve the value of a CPL local variable.

LV$SET Set the value of a CPL local variable.

RD$CE_DP Return breadth of caller's current command environment.

Second Edition 6-1

CE$BRD

Subroutines Reference II: File System

CE$BRD

Returns caller's maximum command environment breadth.

Usage

DCL CE$BRD ENTRY () RETURNS (FIXED BIN(15));

maxjcejbrdth = CE$BRD();

Parameters

maxjcejbrdth
RETURNED VALUE. Maximum number of simultaneous program EPF
invocations permitted per command level.

Discussion

The CE$BRD subroutine is one of several that retrieve EPF-related information
from the in-memory copy of the current user's profile. This routine returns the
maximum number of simultaneous program EPF invocations per command
level; that is, the command environment breadth allocated to the calling user.
The command environment breadth is set on a per-user basis by the System
Administrator.

The value returned is the same as that displayed when the LISTJLIMITS
command is invoked from PRIMOS command level.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

6-2 Second Edition

CE$DPT

CE$DPT

Command Environment

Returns caller's maximum command environment depth.

Usage

DCL CE$DPT ENTRY () RETURNS (FIXED BINQ5));

max_ce_dpth = CE$DPT();

Parameters

max_ce_dpth
RETURNED VALUE. Maximum number of command levels permitted.

Discussion

The CE$DPT subroutine is one of several that retrieve EPF-related information
from the in-memory copy of the current user's profile. This routine returns the
maximum number of command levels permitted; that is, the command
environment depth allocated to the user. The command environment depth is set
on a per-user basis by the System Administrator.

The value returned is the same as that displayed when the LIST_LIMITS
command is invoked from command level.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 6-3

CL$PIX

Subroutines Reference II: File System

CL$PIX

Parses command arguments according to a character string picture of the
command line.

Usage

DCL CL$PIX ENTRY (BIT(16) ALIGNED, CHAR(*)VAR, PTR,
FIXED BIN, CHAR(*)VAR, PTR, FIXED BIN,
FIXED BIN, FIXED BIN, PTR);

CALL CL$PIX (keys, callerjiame, picturejptr, pixeljsize, comjargs,
struc_ptr, pixjndex, bad Judex, non_std_code,
local_vars_ptr);

Parameters

keys
INPUT. A 16-bit structure containing bits set to control certain details of
processing. The structure can be defined in any language as a 16-bit integer
whose value is determined by setting the desired bits on. (See How to Set Bits
in Arguments in Chapter 1.)
The PL/I data description for this structure is

DCL 1 keys,
2 debug bit(1)
2 rnbz bit (11), /* must be 'O'b — 11 bits */
2 keep_quotes bit(l),
2 cpl_flag bit (1),
2 pll_flag bit (1),
2 no_print bit(l);

If debug is ' 1 'b, CL$PIX displays on the terminal a dump of the parsed
argument picture. This is of limited use for most applications programs.
If keep quotes is Tb, CL$PIX does not strip quotes from parsed string
arguments; otherwise, it removes one layer of quotes. This flag is ignored in
CPL mode, and quotes are never stripped.
If cplJJag is ' 1 'b, CL$PIX operates in CPL mode; otherwise, it operates in
normal mode. These modes are explained in detail in Appendix C.
If plljlag is ' 1 'b, the presence of control arguments in the output structure is
indicated by the PL/I data type BIT(l) ALIGNED. If plljlag is 'O'b, the
FORTRAN data type LOGICAL is used.

6-4 Second Edition

CL$PIX

Command Environment

If no_print is T b , no error messages are printed by CL$PIX; only error code
information is returned, \fno_print is 'O'b, caller name is used to format the
error message.

caller_name
INPUT. Name of the calling routine, which formats error messages if
no_print is 'O'b.

picture_ptr
INPUT. Pointer to a varying character string containing the command
argument picture. If dimensioned, the array must be connected (contiguous).
The syntax and semantics of the picture are defined in Appendix C.

pixel_size
INPUT. Maximum length in characters of the element(s) of the object pointed
to by picture_ptr. This provision allows an arbitrarily large array of strings to
be passed and circumvents compiler restrictions on character-string length.

com_args
INPUT. String containing the command arguments to be parsed. It is not
necessary to translate this string to uppercase only, or do any other
preprocessing on it. All syntactic conventions of the PRIMOS Command
Language (PCL), including the "/*" comment delimiter, are supported.

struc_ptr
INPUT -> OUTPUT. A pointer to an output structure whose members will be
filled in with the results of a valid picture parse of the supplied command
arguments. (This argument is used only in normal mode; in CPL mode,
local_yars_ptr determines the destination of the output of the parse.) The
format of this structure is determined by the components of the picture, and is
described in Appendix C.

pixjndex
OUTPUT. Valid only when nonstdcode is nonzero. When valid, pixjndex
is 0 if the error applies to the command arguments string, and is / if the error
applies to element (pixel) / of the picture itself. Errors in the picture are fatal
in the sense that no attempt is made to parse the command arguments if the
picture cannot be parsed.

badjndex
OUTPUT. Character index (counting from 1) of the first character of the
token (word or expression) causing the error. The value of pixjndex must be
consulted to determine whether badjndex is relative to the command line
arguments or to a pixel of the picture, badjndex is valid only if non_std_code
is nonzero.

Second Edition 6-5

file:///fno_print

CL$PIX

Subroutines Reference II: File System

non_std_code
OUTPUT. Return code (independent of PRIMOS standard error codes),
which can take on the following values:

0 No error.

1 Null argument group (two successive semicolons) in
picture.

2 Missing or invalid delimiter in picture.

3 Invalid option argument name in picture.

4 Invalid repeat count in picture.

5 Unknown data type name in picture.

6 Implementation error in picture parse.

7 Token longer than 1024 characters in picture.

8 Option arguments precede object arguments in picture.

11 Too many object arguments in command line.

12 Option argument appears in command line that is not
specified in the picture.

13 Object or parameter on command line does not have the
correct format for its data type.

14 Default value not in proper format in picture.

15 Default value cannot be given for this data type.

16 Too many instances of an option in command line.

17 Default value expression contains an undefined variable
reference or a format error (CPL mode only).

18 Data type UNO. has been given more than once or has
been given for an option argument parameter.

19 Option argument begins with a dot (.), indicating a global
variable, which is not allowed.

20 Undefined option argument.

21 Picture contains a numeric option argument. Option
arguments must contain at least one alphabetic character.

22 Picture contains two sets of option argument names,
separated by a space. Either they are instances of the same
option argument and should be separated by a comma, or
they are different option arguments and should be
separated by a semicolon.

6-6 Second Edition

CL$PIX

Command Environment

local_vars_ptr
INPUT/OUTPUT. Pointer used only in CPL mode. In this case, it points to the
Local Variable Control Block that identifies the area to be used to hold the
parsed arguments, local_vars_ptr should be null if not in CPL mode. See the
description of CPL mode in Appendix C.

Discussion

The caller supplies the command argument picture, the command arguments to
parse, an output structure whose shape corresponds left-to-right with the picture,
and other parameters. CL$PIX parses the picture and, if the picture is valid,
parses the command arguments into the supplied structure. At that point, the
individual arguments have been validated to be of the correct data type,
converted if necessary, and are accessible to the program in a straightforward
manner.

A complete description of CL$PIX parsing syntax and rules is given in
Appendix C.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 6-7

CP$

Subroutines Reference II: File System

CP$

Invokes a command from a running program.

Usage

DCL CP$ ENTRY (CHAR(160) VAR, FIXED BIN(15), FIXED BIN(15),
1,

2 BIT(l),
2 BIT(l),
2 BIT(14),

PTR, PTR);

CALL CP$ {commandJine, status, code, commandJlags,
local^variablejptr, rtnJunction_ptf);

Parameters

command_line
INPUT. Name of the command or program being invoked.

status
OUTPUT. Standard error code from CP$ subroutine execution.

code
OUTPUT. Standard error code from invoked program execution.

commandjlags
INPUT. Information relative to invocation as a command function. It has this
format:

1 flags,
2 command_function_call bit(l),
2 no_eval_vbl_fens bit(l),
2 reserved bit(14);

The first bit, if set, indicates that the program was called as a command
function; the second, if set, indicates that command function and global
variable references are to be passed without modification; the remaining
14 bits are undefined.

6-8 Second Edition

CP$

Command Environment

local_variable_ptr
INPUT. Pointer to local variables allocated during execution, if this CP$ call
is made by a program executed from within a CPL file.

rtn_function_ptr
INPUT -> OUTPUT. Pointer to a return function structure for command
function processing. The return function structure itself has the following
format:

1 rtn_function_structure,
2 version fixed bin(15),
2 char_string char(*) var;

Refer to the discussion of this and other parts of the interface structure in the
description of the ALC$RA subroutine in the Subroutines Reference III:
Operating System.

Discussion

The CP$ subroutine should be called whenever a user wants to invoke a
command or program from within a running program, and wishes to make use of
the extended command processing features available from the standard
command processor.

For a detailed discussion of the use of CP$ within an EPF-based environment,
refer to the Advanced Programmer's Guide III: Command Environment.

CP$ provides an easy-to-use interface for calling external programs. All a
programmer has to do is call CP$ with an argument that represents a command
line. This command line is a character string representation of the external
program to be called. CP$ performs all wildcard, treewalk, and iteration
processing specified by the character string; it does not, however, perform
abbreviation expansion.

For example, a user may have a purchasing program that allows several different
commands, each of which calls an external program that can be called by CP$.
If the purchasing program prompts the user to insert a command line, the user
can enter something like "ORDER wrench" (or the longer form shown below).
ORDER is the name of the external program that does the ordering.

Part of the purchasing program would therefore resemble the following.

Second Edition 6-9

CP$

Subroutines Reference II: File System

/* At this point the user is prompted to input a command. */
/* The user now wants to "ORDER wrench". But, unless ORDER */
/* is in the system's command directory CMDNCO, the RESUME */
/* command must be added to execute ORDER, which could */
/* be one of several programs within a subdirectory */
/* called PROGS:"RESUME PROGS>ORDER wrench." */

/* The subroutine cl$get is called to gather the terminal input. */

CALL CL$GET(COMMAND_LINE, COMMAND_LINE_LENGTH, CODE);

/* Now CP$ uses that command_line to fetch */

/* the program that will honor this request. */

CALL CP$(COMMAND_LINE, STATUS, CODE);

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

6-10 Second Edition

GV$GET

GV$GET

Command Environment

Retrieves the value of a global variable.

Usage

DCL GV$GET ENTRY (CHAR(*)VAR, CHAR(*)VAR, FIXED BIN,
FIXED BIN);

CALL GV$GET {varjiame, var_value, \alue_size, code);

Parameters

var_name
INPUT. Name of the global variable whose value is to be retrieved.

var_value
OUTPUT. Returned value of variable var name.

value_size
INPUT. The length of the user's buffer var value in characters.

code
OUTPUT. Standard error code. Possible values are

E$BFTS The user buffer var_value is too small to hold the current
value of the variable. The value of the variable can be up to
1024 characters long, or, if numeric, can be between
-2**31+1 and 2**31-1, inclusive.

E$UNOP The global variable storage file is not open or is in invalid

format.

E$FNTF The variable is not found.

E$BNAM The variable name must be preceded by a period.

Discussion

The PRIMOS command DEFINE_GVAR must be used to define the global
variable file before this subroutine is called.

The name supplied in varname must follow the rules for CPL global variable
names and must be in uppercase. It must exist in the global variable file last
invoked with DEFINE GVAR.

Second Edition &-11

file:///alue_size

GV$GET

Subroutines Reference II: File System

Refer to the CPL User's Guide or the PRIMOS User's Guide for information on
global variable usage and naming rules.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

6-12 Second Edition

GV$SET

• • • • • • • •

Command Environment

GV$SET

Sets the value of a global variable.

Usage

DCL GV$SET ENTRY (CHAR(*)VAR, CHAR(*)VAR, FIXED BIN);

CALL GV$SET (var_name, var_value, code);

Parameters

varjiame
INPUT. Name of the global variable to be set.

var_value
INPUT. New value of the variable var name.

code
OUTPUT. Standard error code. Possible values are

E$BFTS The specified value is too big. The value of the variable
can be up to 1024 characters long, or, if numeric, can be an
integer between-2**31 and 2**31 - 1, inclusive.

E$UNOP The global variable file is invalid or not open.

E$ROOM An attempt by the variable management routines to acquire
more storage fails.

E$BNAM The variable name must be preceded by a period.

Discussion

The PRIMOS command DEFINE_GVAR must be used to define the global
variable file before this subroutine is called.

The name supplied in var name must follow the rules for CPL global variable
names and must be in uppercase. The variable name and its new value are
placed in the global variable file last invoked with DEFTNE_GVAR. If the name
already exists in the file, its value is overlaid by the new value.

Refer to the CPL User's Guide or the PRIMOS User's Guide for information on
global variable usage and naming rules.

Second Edition 6-13

GV$SET

Subroutines Reference II: File System

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

6-14 Second Edition

LIST$CMD

Command Environment

LIST$CMD

Returns a list of commands valid at mini-command level.

Usage

DCL LIST$CMD ENTRY (CHAR(32) VAR,
1,

2 BIN(15),
2 BIN(15),
2 BIT(l) ALIGNED,

FIXED BINQ5));

CALL LIST$CMD {wildcard_match, print_opts, code);

Parameters

wUdcardjnatch
INPUT. Wildcard character string that determines the subset of commands to
be included in the list. Any matches found are returned herein.

print_opts
INPUT. Options to control list format, specified in the structure described in
the Discussion section.

code
OUTPUT. Standard error code.

Discussion

The LIST$CMD subroutine displays to a user's terminal those mini-level
commands qualified by a wildcard character string match. The command
mini-level is explained in the PRIMOS User's Guide and the Programmer's
Guide to BIND andEPFs.

wUdcardjnatch is a character string that is used as a pattern match for
mini-level commands to be listed. The character string can contain wildcard
characters. If you do not specify wildcard jnatch, LIST$CMD displays the
names of all the PRIMOS commands that you can use at mini-command level.

The format in which the mini-level commands are displayed is controlled by
printopts. The number of lines per screen, the number of characters per line,
and the presence or absence of a full-screen prompt are specified in the structure
shown below.

Second Edition 6-15

LIST$CMD

Subroutines Reference II: File System

DCL 1 print_opts,
2 11 bin(15), /* max. line length (characters) */
2 pi bin(15), /* max. page length (lines) */
2 nw bit(l) aligned, /* 'l'b if no "More—" prompt */

The value of // determines how many commands can be shown on each line of
the display. The default value is 80 characters. The value of pi must be at least 4
in order to display a header line and at least one line of commands on one
screenful. The default value is 24 lines. The standard PRIMOS More— prompt,
which accepts the usual YES, NO, QUIT, or Return, is displayed if the value of
nw is given as '0'b.

If the wildcard string submitted is invalid, an error code such as E$FDMM
(format/data mismatch) is returned. If a valid string does not elicit a single
match, E$FNTF (file not found) is returned.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

6-16 Second Edition

LV$GET

LV$GET

Command Environment

Retrieves the value of a CPL local variable.

Usage

DCL LV$GET ENTRY (PTR, CHAR(32) VAR, CHAR(*) VAR,
FIXED BIN(15), FIXED BIN(IS));

CALL LV$GET (vcb_ptr, varjname, var_value, var_size, code);

Parameters

vcb_ptr
INPUT. Pointer to the block of local variables for the CPL program.

var_name
INPUT. Name of the variable in the CPL program.

varjvalue
OUTPUT. Value of the CPL variable.

var_size
INPUT. Maximum length in characters of the user buffer varjvalue.

code
OUTPUT. Standard error code.

Discussion

The LV$GET subroutine is used by CPL programs to retrieve the value of a local
variable when the [GETJVAR] command function is invoked. It can also be used
by user programs called from within CPL programs to perform the same
function.

The caller supplies in vcb_ptr a pointer to the first (or only) variable control
block (VCB), which is formatted as described for the LV$SET subroutine, later
in this chapter.

The name supplied in varjiame must follow the rules for CPL local variable
names and must be in uppercase.

The current value of the local variable is returned to the calling program in
var value. The number of characters returned is either the actual number of

Second Edition 6-17

LV$GET

Subroutines Reference II: File System

characters in the value or the number specified in var_size, whichever is smaller.
If the number of characters in the value is greater than that specified in var_size,
the first var size characters of the value are returned. In this case code indicates
that the buffer size is too small.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

6-18 Second Edition

LV$SET

LV$SET

Command Environment

Sets the value of a CPL local variable.

Usage

DCL LV$SET ENTRY (PTR, CHAR(32) VAR, CHAR(*) VAR,
FIXED BIN(15));

CALL LV$SET (ycb_ptr, varjname, varjvalue, code);

Parameters

vcbjptr
INPUT. Pointer to the local variable block for the CPL program.

varjiame
INPUT. Name of the local variable in the CPL program.

var_value
INPUT. Value to be assigned to the CPL local variable.

code
OUTPUT. Standard error code.

Discussion

The LV$SET subroutine is used by CPL programs to set the value of a local
variable when the [SETJVAR] command function is invoked. It can also be used
by user programs called from within CPL programs to perform the same
function.

The caller passes to LV$SET in vcb_ptr a pointer to the first variable control
block (VCB), which has the format shown below.

del 1 vcb based, /* Variable Manager Control Block */
2 next_vcb ptr, /* forward link in list of veb's */
2 this_area ptr, /* ptr to area with this vcb */
2 var_chain ptr; /* start of var list

(only in 1st vcb) */

Each variable in the variable storage area is represented by the structure shown
below.

Second Edition 6-19

LV$SET

Subroutines Reference II: File System

del 1 vh based, /* Variable Header */
2 next ptr, /* forward link in list */
2 value ptr, /* ptr to char(n) var value */
2 value_area ptr, /* ptr to value allocation area */
2 value_size fixed bin, /* capacity of value in

chars */
2 reserved(3) fixed bin,
2 name char(32) var; /* name of variable being set */

The structures shown above are created and maintained by the variable manager
when variables are defined. If the variable manager runs out of space in the
current variable storage area, it attempts to allocate more space; if the attempt is
unsuccessful, an error code is returned, indicating that there is no more room
available.

The name supplied in var name must follow the rules for CPL local variable
names and must be in uppercase. The value supplied in var_value can be up to
1024 characters long.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

6-20 Second Edition

RD$CE_DP

Command Environment

RD$CE_DP
RD$CED

Returns the breadth of the caller's current command environment.

Usage

DCL RD$CE DP ENTRY (FIXED BIN);

CALL RD$CE DP (com_env__brdth);

Parameters

com_env_brdth
OUTPUT. The current breadth of the command environment.

Discussion

The RD$CE_DP subroutine is one of several that retrieve EPF-related
information from the in-memory copy of the current user's profile.

This subroutine returns the breadth of the command environment at which the
user is currently operating. The breadth of the command environment is the
number of program invocations at the current command level.

The maximum command environment breadth is set on a per-user basis by the
System Administrator. The user can retrieve this maximum for comparison with
the current breadth by using the CE$BRD subroutine, described earlier in this
chapter, or by invoking the LIST_LIMITS command from PRIMOS command
level.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 6-21

Search Rules

7

The PRIMOS search rules facility enables you to set sequential search lists that
PRIMOS uses to locate file system objects. The search rules facility is described
in the Advanced Programmer's Guide II: File System. The subroutines described
here permit you to read and modify these search lists, and to use search lists to
locate and open file system objects.

Note The Rev. 23.0 file system introduces the concept of the common file system name
space. The contents of the disk partitions with the common file system namespace make
up one logical entity. This means, among other things, that logically there are no remote
disks within the namespace. Be aware that with the advent of Rev. 23.0, the potential
number of disks that you can access increases from 238 to 1280. Therefore, a
well-considered use of the search rules subroutines may be necessary to gain more rapid
access to those disks that you use most frequently.

For a detailed description of the Rev. 23.0 file system, refer to the Advanced
Programmer's Guide II: File System.

Most search rule subroutines can be invoked by either their full name or a
six-character synonym. The following subroutines, their declarations, and their
calling sequences are described in this chapter.

OPSR$ Locate a file using a search list and opens the file. Create a
file if the file sought does not exist.

OPSRS$ Locate a file using a search list and a list of suffixes. Open
the located file, or creates a file if the file sought does not
exist.

SR$ABSDS Disable an optional search rule. Used to disable rules that
have been enabled using SR$ENABL. SR$ABSDS
absolutely disables an enabled rule, regardless of how many
times the rule has been enabled. Compare with SR$DSABL.

SR$ ADDB Add a rule to the beginning of a search list or before a
specified rule.

SR$ADDE Add a rule to the end of a search list or after a specified rule.

SRSCREAT Create a search list.

Second Edition 7-1

Subroutines Reference II: File System

SR$DEL

SR$DSABL

SR$ENABL

SR$EXSTR

SR$FR_LS

SR$INIT

SR$LIST

SR$NEXTR

SR$READ

SR$REM

SR$SETL

SR$SSR

Delete a search list.

Disable an optional search rule. Used to disable rules that
have been enabled using SR$ENABL. SR$DSABL disables
a single SR$ENABL operation. Compare with SR$ABSDS.

Enable an optional search rule. Enabled rules can be disabled
using SR$DSABL or SRSABSDS.

Determine if a search rule exists.

Free list structure space allocated by SR$LIST or SR$READ.

Initialize all search lists to system defaults.

Return the names of all defined search lists.

Read the next rule from a search list.

Read all of the rules in a search list.

Remove a search rule from a search list.

Set the locator pointer for a search rule.

Set a search list using a user-defined search rules file.

Some PRIMOS search rule subroutines require data types not available in all
languages. All search rule subroutines can be executed using PL/I. All
subroutine arguments are mandatory. Most arguments, such as listname, are
case-insensitive. However, arguments that compare a search rules value to an
existing search rule are case-sensitive. Arguments cannot perform wildcard
operations.

7-2 Second Edition

OPSR$

Search Rules

OPSR$

OPSR$ locates a file using a search list and open the file. This subroutine can
also be used to create a file if the file sought does not exist.

Usage

DCL OPSR$ ENTRY (CHAR(32) VAR, CHAR(128) VAR, FIXED BIN,
FIXED BIN, CHAR(128) VAR, FIXED BIN,
FIXED BIN, CHAR(128) VAR, FIXED BIN);

CALL OPSR$ (list_name, referencing_dir, validjypes,
action+newfile+getu, object_name,funit, type,
found_path, code);

Parameters

list_name
INPUT. The name of the search list that OPSR$ should use to locate the
desired file. If you set list name to null, OPSR$ treats the objectname as a
full pathname.

referencingjiir
INPUT. A search rule to substitute for the [referencing_dir] keywords in the
search list. You establish either a search rules string or a null value for this
argument. The search rule you specify here is temporarily substituted into the
search list; then the search operation is performed on this search list. This
substitute value is only kept for the duration of the subroutine call. If this
argument is set to the null value, search rules containing the [referencing_dir]
keyword are skipped over during the search operation.

validjypes

INPUT. Type of file system object to be located. The following values are
permitted:

K$UNKN Unknown file type, any file system object acceptable.

K$ACAT Access categories (ACATs) only. OPSR$ can only verify

the existence of an ACAT; OPSR$ does not open ACATs.

K$FILE Files only.

K$SDIR Segment directories only.

K$DIR Directories only.

Second Edition 7-3

OPSR$

Subroutines Reference II: File System

You can concatenate multiple valid jypes options using a plus sign (+). For
example, K$FrLE+K$DIR can open either a file or a directory.

action
INPUT. Type of action to perform on the file system object when located.
The following values are permitted:

K$EXST Verify existence of objectname. This is the only value

permitted for ACATs.

K$READ Open objectname for reading.

K$WRIT Open objectname for writing.

K$RDWR Open objectname for update (reading and writing).

newflle

INPUT. If you are creating a new file, specify an action of K$WRIT or
K$RDWR and then use newfile to specify the type of file you want to create.
To specify newftle, use a plus sign (+) to concatenate the action argument with
one of the following:

K$NSAM New sequential access (SAM) file

K$NDAM New direct access (DAM) file

K$NSGS New sequential access (SAM) segment directory

K$NSGD New direct access (DAM) segment directory

For example, to create a DAM file, you might specify K$WRIT+K$NDAM.
newfile is an optional argument. If you do not specify newfile and circum
stances permit OPSR$ to create a new file, it creates a SAM file.

getu

INPUT. If you wish PRIMOS to automatically select the file unit number, use
a plus sign to concatenate K$GETU to the action argument or the newfile
argument (for example, K$WRIT+K$NDAM+ K$GETU). The getu
argument is optional. If you omit getu, you must specify the file unit number
using the junit argument.

object_name

INPUT. The name of the file system object for which you are searching.
object name can be either an objectname or a full pathname. If you supply an
objectname, OPSR$ performs a search using list name. If you supply a full
pathname, OPSR$ locates the file system object without using listjiame.

7-4 Second Edition

OPSR$

Search Rules

funit
INPUT. The file unit number that you wish to use for opening the file.

OUTPUT. If you specify a value of K$GETU in the getu argument, PRIMOS
automatically assigns a file unit number to the file. The. funit argument is then
used to return the file unit number assigned by PRIMOS.

type
OUTPUT. The type of the object that OPSR$ successfully opened. Possible
values are

0 SAM file

1 DAM file

2 SAM segment directory

3 DAM segment directory

4 UFD top-level directory or subdirectory

found_path
OUTPUT. The absolute pathname of the file successfully opened.

code
OUTPUT. Standard error code. Possible values are

E$OK Operation succeeded.

E$UIUS The file has already been opened.

E$NRIT You do not have read access rights to a file.

E$FNTF The requested file cannot be located.

E$LIST The search list specified cannot be located.

Discussion

OPSR$ is normally used to locate a file using a search list and then open the file.
To use OPSR$ in this way, supply the filename to the objectname argument and
the search list name to listname argument.

OPSR$ can also be used to open a file without using a search list. To use OPSR$
in this way, supply the full pathname of the file to the object name argument and
a null value to listname. A full pathname may include or omit the disk partition
name. PRIMOS supplies an omitted partition name from the ATTACH$ search
list (if one exists) or from the list of attached disks. Refer to the Advanced
Programmer's Guide II: File System for further details on this use of ATTACHS.

OPSR$ can be used to create a new file, if no file of that name exists. To create
a new file, you must set the action argument to K$WRIT or K$RDWR, and

Second Edition 7-5

OPSR$

Subroutines Reference II: File System

OPSR$ must have sufficient information to determine where to create the file.
For OPSR$ to create a file, either the objectname argument must contain the
full pathname of the file, or the objectname argument must contain the name of
the file and the listjiame argument must be set to null. If object name is a
filename and listname is null, OPSR$ creates the new file in the currently
attached directory. The type of file created is determined by the value of the
newfile argument. If you did not specify newfile, OPSR$ creates a SAM file.

The SRCH$$ subroutine can also be used to locate and open files. SRCH$$ has
additional file access features not found in OPSR$; however, SRCH$$ cannot
use the search rules facility to locate file system objects. If you wish to search
for a file using both the search rules facility and a list of suffixes, use the
OPSRS$ subroutine.

Examples

The following two examples perform identical operations; the first example is
written in PL/I, the second in FORTRAN 77. Each of these examples locates
and opens the file TESTFILE, using the MYLIST search list. Each example first
inserts the search rule MYDIR>TOOLS into MYLIST at the location specified
by [referencing_dir], and then searches MYLIST. TESTFILE may be a file or a
segment directory. When OPSR$ locates TESTFILE, it opens it for update.

/* Sample PL/I program for the OPSR$ subroutine */
OPEN_PROG: PROCEDURE;
%INCLUDE 'SYSCOM>KEYS.PLl' ;
DCL OPSR$ ENTRY(CHAR(32) VAR, CHAR(128) VAR,

FIXED BIN, FIXED BIN,
CHAR(128) VAR, FIXED BIN,
FIXED BIN, CHAR(128) VAR,
FIXED BIN);

DCL LIST CHAR(32) VAR STATIC INIT('MYLIST');
DCL REF CHAR(128) VAR STATIC INIT('MYDIR>TOOLS');
DCL V_TYPE FIXED BIN;
DCL KEYS FIXED BIN;
DCL OBJNAME CHAR(128) VAR STATIC INIT('TESTFILE');
DCL FUNIT FIXED BIN STATIC INIT ('3');
DCL TYPE FIXED BIN;
DCL FOUND CHAR(128) VAR;
DCL CODE FIXED BIN;
CALL OPSR$ (LIST, REF, K$FILE+K$SDIR, K$RDWR,

OBJNAME, FUNIT, TYPE, FOUND, CODE);
IF (CODE = 0)
THEN

PUT SKIP LISTCFile successfully opened: ', FOUND);
ELSE

PUT SKIP LIST('Error code: ', CODE);
PUT SKIP;
END;

7-6 Second Edition

OPSR$

Search Rules

C Sample FORTRAN 77 program for the OPSR$ subroutine

$INSERT SYSCOM>KEYS.INS.FTN
C Declarations

INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*2 REFSIZE, REFPLUS(128)
CHARACTER*128 REF
INTEGER*2 VJTYPE
INTEGER*2 KEYS
INTEGER*2 OBJSIZE, OBJPLUS(128)
CHARACTER*128 OBJNAME
INTEGER*2 FUNIT
INTEGER*2 TYPE
INTEGER*2 FSIZE, FPLUS(128)
CHARACTER*128 FOUND
INTEGER*2 CODE

C Record equivalences
EQUIVALENCE (LSIZE, LPLUS(l))
EQUIVALENCE (LPLUS(2), LIST)
EQUIVALENCE (REFSIZE, REFPLUS(D)
EQUIVALENCE (REFPLUS(2), REF)
EQUIVALENCE (OBJSIZE, OBJPLUS(1))
EQUIVALENCE (OBJPLUS(2), OBJNAME)
EQUIVALENCE (FSIZE, FPLUS(1))
EQUIVALENCE (FPLUS(2), FOUND)

C Assignments
LIST(1:6) = 'MYLIST'
LSIZE = 6
REF(1:12) = 'MYDIR>TOOLS'
REFSIZE = 12
FUNIT = 3
OBJNAME(1:8) = 'TESTFILE'
OBJSIZE = 8
FOUND = ''

C Subroutine call
CALL OPSR$(LPLUS, RPLUS, K$FILE+K$SDIR, K$RDWR,
* OBJPLUS, FUNIT, TYPE, FPLUS, CODE)
IF (CODE.NE.O) GO TO 10
PRINT *, 'File successfully opened: ', FOUND(1:FSIZE)
CALL EXIT

C Error routine
10 PRINT *, 'Error code: ', CODE

CALL EXIT
END

Second Edition 7-7

OPSR$

Subroutines Reference II: File System

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

7-8 Second Edition

OPSRS$

Search Rules

OPSRS$

OPSRS$ locates and opens a file using a search list and a list of suffixes. This
subroutine can also be used to create and open a file if the file sought does not
exist. This subroutine is an extension of OPSR$. It provides support for suffix
list checking in addition to the search rules support of OPSR$.

Usage

DCL OPSRS$ ENTRY (CHAR(32) VAR, CHAR(128) VAR, FIXED BIN,
FIXED BIN, CHAR(128) VAR, FIXED BIN,
FIXED BIN, FIXED BIN, PTR, CHAR(32) VAR,
FIXED BIN, CHAR(128) VAR, FIXED BIN);

CALL OPSRS$ (listjname, referencing_dir, valid_types,
action+null_suffix+newfile+getu, object_name, /unit,
type, n_suffixes, suffix_list_ptr, basename, suffixjused,
found_path, code);

Parameters

listjname
INPUT. The name of the search list that PRIMOS should use to locate the
desired file. If you set listname to null, OPSRS$ treats the object name as a
full pathname.

referencing _dir
INPUT. A search rule to substitute for the [referencing_dir] keywords in the
search list. You establish either a search rules string or a null value for this
argument. The search rule you specify here is substituted into the search list;
then the search operation is performed on this modified search list. If you set
this argument to the null value, search rules containing the [referencing_dir]
keyword are skipped over during the search operation.

validjypes
INPUT. Type of file system object to be located. The following values are
permitted:

K$UNKN Unknown file type, any file system object acceptable.

K$ACAT Access categories only. OPSRS$ can only verify the
existence of an ACAT, OPSRS$ does not open ACATs.

K$FILE Files only.

Second Edition 7-9

OPSRS$

Subroutines Reference II: File System

K$SDIR Segment directories only.

K$DIR Directories only.

You can concatenate multiple valid types options using a plus sign (+)• For
example, K$FILE+K$DIR can open either a file or a directory.

action

INPUT. Type of action to perform on file system object when located. The
following values are permitted:

K$EXST Verify existence of object name. This is the only value

permitted for ACATs.

K$READ Open object name for reading.

K$WRIT Open object name for writing.

K$RDWR Open object name for update (reading and writing).

null_sujftx
To search for a file with no suffix first, use a plus sign to concatenate
K$NULF to the action argument (for example, K$WRIT+K$NULF).
nullsuffix is an optional argument. If you specify K$NULF, PRIMOS first
searches for objectname with no suffix, then searches for objectname with
the suffixes specified in the array pointed to by suffix_list_ptr. If you do not
specify K$NULF, PRIMOS searches for objectname with no suffix last.

newfile
If you are creating a new file, use action to specify either K$WRIT or
K$RDWR and then use newfile to specify what type of file to create. To
specify newftle, use a plus sign (+) to concatenate the action argument with
one of the following:

K$NSAM New sequential access (SAM) file

K$NDAM New direct access (DAM) file

K$NSGS New sequential access (SAM) segment directory

K$NSGD New direct access (DAM) segment directory

For example, to create a DAM file you might specify K$WRIT+ K$NDAM.
newfile is an optional argument. If you do not specify newfile, PRIMOS
creates a SAM file.

getu
If you wish PRIMOS to automatically select the file unit number, use a plus
sign to concatenate K$GETU to the action, nullsuffix, or newfile argument
(for example, K$WRIT+K$NDAM+K$GETU). getu is an optional argument.
If you do not specify getu, you must specify the file unit number using the
funit argument.

7-10 Second Edition

OPSRS$

Search Rules

objectjname
INPUT. The name of the file system object for which you are searching. This
name does not have to include the filename suffix, object name can be a
objectname or a full pathname. If you supply an objectname, OPSRS$ uses
the search rules facility to perform a search using the listname and a list of
suffixes. If you supply a full pathname, OPSRS$ uses the list of suffixes to
locate the file without using list name.

funit
INPUT. The file unit number that you wish to use for opening the file.
OUTPUT. If you specify a value of K$GETU in the getu argument, PRIMOS
automatically assigns a file unit number to the file. In that case, OPSRS$ uses
funit to return the file unit number assigned by PRIMOS.

type
OUTPUT. The type of the object that OPSRS$ successfully accessed.
Possible values are

0 SAM file

1 DAM file

2 SAM segment directory

3 DAM segment directory

4 UFD top-level directory or subdirectory

n_suffixes
INPUT. The number of suffixes in the suffix list. Each suffix is an element in
an array pointed to by the suffix_list_ptr. Set n_suffixes to 0 if no suffix
checking is desired.

suffix_list_ptr

INPUT. A pointer to an array that contains a list of suffixes.

basename
OUTPUT. The filename of the successfully accessed file. The basename
does not include the suffix (if any) of the filename.

suffixjused
OUTPUT. The sequence number of the suffix used to locate the file. The
suffixes listed in the array are assigned sequential numbers, beginning with 1.
A suffixused value of 0 indicates that the file located had no suffix.

found_path

OUTPUT. The absolute pathname of the successfully opened file.

Second Edition 7-11

OPSRS$

Subroutines Reference II: File System

code
OUTPUT. Standard error code. Possible values are

E$OK Operation succeeded.

E$UIUS The file has already been opened.

E$NRIT You do not have read access rights to a file.

E$FNTF The requested file cannot be located.

E$LIST The search list specified cannot be located.

Discussion

OPSRS$ performs all of the operations performed by OPSR$. It uses the search
list you specify in listname to locate and open the file system object you specify
in objectjiame. However, OPSRS$ does not require that object name include
the filename suffix. Instead, OPSRS$ uses a list of suffixes when searching for a
file.

OPSRS$ searches each rule in the search list for the specified filename plus the
first listed suffix, then the second suffix, and so on. If you specify K$NULF,
OPSRS$ first checks for object name with no suffix; otherwise, OPSRS$ checks
for object name with no suffix after testing a search rule for the combination of
objectjiame and all listed suffixes. If unsuccessful, OPSRS$ proceeds to the
next rule in the search list and repeats this suffix-checking search operation.

If the objectjiame you supply already has a suffix, such as MYFILE.RUN,
OPSRS$ appends suffixes from the list to objectjiame, creating filenames with
multiple suffixes, such as MYFILE.RUN.CPL. However, OPSRS$ does not
append a suffix to an identical suffix, (for example, MYFILE.RUN.RUN), but
instead tests the object name (MYFILE.RUN) without the duplicate suffix.

Creating a Suffix List: Declare a suffix list as an array of elements pointed
to by the suffix listj?tr. Elements are declared as CHAR(32) VAR. The number
of elements should be equal to the value of the njmffixes argument. The
nsuffixes argument, not the number of elements in the array, determines how
many suffixes are used for suffix checking.

Initialize this array with the suffixes to be used for suffix checking. Each suffix
should begin with a period (.). User-defined suffixes, such as .MYSTUFF, and
multiple suffixes, such as .MYSTUFF.CPL, are permitted.

You can also use the SRSFX$ subroutine to locate and open files using a suffix
list. SRSFX$ has additional file access features not found in OPSRS$; however,
SRSFX$ cannot use the search rules facility to locate file system objects.

7-12 Second Edition

OPSRS$

Search Rules

Examples

The following two examples perform identical operations; the first example is
written in PL/I, the second in FORTRAN 77. Each of these examples locates
and opens the file TESTFILE, using the MYLIST search list and a list of
suffixes. Using the suffix list, OPSRS$ locates either TESTFILE.CPL,
TESTFILE.F77 or TESTFILE and opens it for update.

/ * S a m p l e P L / l p r o g r a m f o r t h e OPSRS$ s u b r o u t i n e * /

OPEN_PROG: PROCEDURE;
%INCLUDE 'SYSCOM>KEYS.PL1 ' ;
/ * D e c l a r a t i o n s * /
DCL OPSRS$ ENTRY(CHAR(32) VAR, CHAR(128) VAR,

FIXED BIN, FIXED BIN,
CHAR(128) VAR, FIXED BIN,
FIXED BIN, FIXED BIN,
PTR, CHAR(32) VAR,
FIXED BIN, CHAR(128) VAR,
FIXED B I N) ;

DCL LIST CHAR(32) VAR STATIC I N I T (' M Y L I S T ') ;
DCL REF CHAR(128) VAR STATIC I N I T (") ;
DCL V_TYPE FIXED BIN;
DCL KEYS FIXED B I N ;
DCL OBJNAME CHAR(128) VAR STATIC I N I T (' T E S T F I L E ') ;
DCL FUNIT FIXED BIN STATIC I N I T (' 3 ') ;
DCL TYPE FIXED BIN;
DCL N_SUFX FIXED BIN STATIC I N I T (' 2 ') ;
DCL SUFX_PTR PTR;
DCL BASENAME CHAR(32) VAR;
DCL SUFX_USED FIXED BIN;
DCL FOUND CHAR(128) VAR;
DCL CODE FIXED BIN;
DCL SUFX_LIST(1:2) CHAR(32) VAR STATIC INIT

('.CPL', '.F77');
/* Subroutine call */
CALL OPSRS$(LIST, REF, K$FILE, K$RDWR, OBJNAME,

FUNIT, TYPE, N_SUFX, ADDR(SUFX_LIST), BASENAME,
SUFX_USED, FOUND, CODE);

IF (CODE = 0)
THEN

PUT SKIP LIST('File successfully opened: ', FOUND);
ELSE

PUT SKIP LIST('Error code: ', CODE);
PUT SKIP;
END;

Second Edition 7-13

OPSRS$

Subroutines Reference II: File System

C Sample FORTRAN 77 program for the OPSRS$ subroutine

$INSERT SYSCOM>KEYS.INS.FTN
C Declarations of subroutine arguments

INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*2 REFSIZE, REFPLUS(128)
CHARACTER*128 REF
INTEGER*2 V_TYPE
INTEGER*2 KEYS
INTEGER*2 OBJSIZE, OBJPLUS(128)
CHARACTER*128 OBJNAME
INTEGER*2 FUNIT
INTEGER*2 TYPE
INTEGER*2 N_SUFX
INTEGER*4 SUFX_PTR
INTEGER*2 BSIZE, BPLUS(32)
CHARACTER*32 BASENAME
INTEGER*2 SUFX_USED
CHARACTER*128 FOUND
INTEGER*2 CODE

C Declarations of suffix list
INTEGER*2 SUFX_LIST(34)
INTEGER*2 LSUF1, LSUF2
CHARACTER*32 SUFI, SUF2
INTEGER*2 FSIZE, FPLUS(128)

C Define equivalences for character type arguments
EQUIVALENCE (LSIZE, LPLUS(l))
EQUIVALENCE (LPLUS(2), LIST)
EQUIVALENCE (REFSIZE, REFPLUS(l))
EQUIVALENCE (REFPLUS(2), REF)
EQUIVALENCE (OBJSIZE, OBJPLUS(l))
EQUIVALENCE (OBJPLUS(2), OBJNAME)
EQUIVALENCE (BSIZE, BPLUS(l))
EQUIVALENCE (BPLUS(2), BASENAME)
EQUIVALENCE (FSIZE, FPLUS(l))
EQUIVALENCE (FPLUS(2), FOUND)

C Define equivalences for suffix list
EQUIVALENCE (LSUF1, SUFX_LIST (1))
EQUIVALENCE (SUFI, SUFX_LIST(2))
EQUIVALENCE (LSUF2, SUFX_LIST(18))
EQUIVALENCE (SUF2, SUFX_LIST (19))

C Assignments

LIST (1:6) = 'MYLIST'
LSIZE = 6
REF(1:1) = "
REFSIZE = 1
OBJNAME(1:8) = 'TESTFILE'
OBJSIZE = 8
FUNIT = 3
N SUFX = 2

7-14 Second Edition

OPSRS$

Search Rules

SUFX_PTR = L0C(SUFX_LIST(1))
FOUND = ''
SUFI(1:4) = ' .CPL'
LSUF1 = 4
SUF2(1:4) = '.F77'
LSUF2 = 4

C Subroutine call
CALL OPSRS$(LPLUS, RPLUS, K$FILE, K$RDWR,
* OBJPLUS, FUNIT, TYPE, N_SUFX, SUFX_PTR, BPLUS,
* SUFX_USED, FPLUS, CODE)
IF (CODE.NE.O) GO TO 10
PRINT *, 'File successfully opened: ', FOUND(1:FSIZE)
CALL CLOS$A(FUNIT)
CALL EXIT

C Error processing
10 PRINT *, 'Error code: ', CODE

CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 7-15

SR$ABSDS

Subroutines Reference II: File System

SR$ABSDS
SR$ABS

SR$ABSDS disables an optional search rule in a specified search list. This
subroutine absolutely disables an enabled rule, regardless of how many times the
rule has been enabled. Compare with SR$DSABL.

Usage

DCL SR$ABSDS EXTERNAL ENTRY (CHAR(128) VAR,
CHAR(32) VAR, FIXED BIN);

CALL SR$ABSDS (rule, listjiame, code);

Parameters

rule
INPUT. The search rule to be disabled. The rule specified in this argument
should not include the -optional keyword. The rule specified in this argument
should be otherwise identical to the rule in the corresponding search list. This
argument is case-sensitive.

listjname
INPUT. The name of the search list in which the rule is located.

code
OUTPUT. Standard error code. Possible values are

E$OK Operation succeeded. SR$ABSDS returns E$OK even if

the rule was not enabled.

E$LIST Search list does not exist.

E$RULE Search rule cannot be located. Rule may be nonexistent or
specified in the wrong case.

E$NTOP Rule specified is not an optional rule.

7-16 Second Edition

SR$ABSDS

Search Rules

Discussion

An optional search rule is a rule prefaced by the -optional keyword in the search
rules file. Such rules are initially disabled when the search rules file is used to
set the search list. PRIMOS ignores disabled search rules when performing a
search operation. You can enable an optional search rule using SR$ENABL.
SR$DSABL and SR$ABSDS are used to disable a rule that has been enabled
using SR$ENABL.

Both SR$ENABL and SR$DSABL can be invoked repetitively for the same
search rule. PRIMOS compares the number of calls to SR$ENABL with the
number of calls to SR$DS ABL. Each SR$DS ABL call disables one invocation
of SR$ENABL; therefore, to disable a rule you must invoke SR$DSABL as
many times as SR$ENABL was called. If you use SR$DSABL to repeatedly
disable a rule, you must invoke SR$ENABL a corresponding number of times to
enable the rule.

SR$ABSDS absolutely disables a search rule. It reverses multiple calls to either
SR$ENABL or SR$DSABL. If a rule is enabled, one invocation of SR$ABSDS
disables the rule, regardless of how many times the rule had been enabled. If a
rule is already disabled, one invocation of SR$ABSDS reverses any excess
disable operations. A rule disabled by SR$ABSDS can be enabled by a single
invocation of SR$ENABL.

Examples

The following two examples perform identical operations; the first example is
written in PL/I, the second in FORTRAN 77. Each of these examples disables
the search rule MYDIR>OPTTESTS in the search list MYLIST.

/* Sample PL/I program for t he SR$ABSDS subrou t ine */

ABS_SUB: PROCEDURE;
DCL SR$ABSDS EXTERNAL ENTRY(CHAR(128) VAR, CHAR(32) VAR,

FIXED BIN);
DCL RULE CHAR(128) VAR STATIC INIT('MYDIR>OPTTESTS');
DCL LIST CHAR(32) VAR STATIC INIT('MYLIST');
DCL CODE FIXED BIN;
CALL SR$ABSDS(RULE, LIST, CODE);
IF (CODE = 0)
THEN

PUT SKIP LIST('Optional rule disabled');
ELSE

PUT SKIP LIST('Error code: ', CODE);
PUT SKIP;
END;

Second Edition 7-17

SR$ABSDS

Subroutines Reference II: File System

C Sample FORTRAN 77 program for the SR$ABSDS subroutine

C Declarations
INTEGER*2 RULESIZE, RULEPLUS(128)
CHARACTER*128 RULE
INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*2 CODE

C Equivalences
EQUIVALENCE (RULESIZE, RULEPLUS(1))
EQUIVALENCE (RULEPLUS(2), RULE)
EQUIVALENCE (LSIZE, LPLUS(1))
EQUIVALENCE (LPLUS(2), LIST)

C Assignments
LIST(1:6) = 'MYLIST'
LSIZE = 6
RULE(1:15) = 'MYDIR>OPTTESTS'
RULESIZE = 15

C Subroutine call
CALL SR$ABSDS(RULEPLUS, LPLUS, CODE)
IF (CODE.NE.O) GO TO 10
PRINT *, 'Optional rule disabled'
CALL EXIT

C Error processing
10 PRINT *, 'Error code ', CODE

CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

7-18 Second Edition

SR$ADDB

Search Rules

SR$ADDB
SR$ADB

SR$ADDB adds a search rule before an existing search rule in a search list. This
subroutine can also be used to add a rule at the beginning of a search list.

Usage

DCL SR$ADDB EXTERNAL ENTRY (CHAR(32) VAR,
CHAR(128) VAR,
CHAR(128) VAR, FIXED BIN);

CALL SR$ADDB (list_name, oldjrule, newjrule, code);

Parameters

tist_name
INPUT. The name of the search list to which you wish to add a search rule.

oldjrule
INPUT. An existing rule in the search list. SRSADDB adds new rule
immediately before the rule specified in this argument. The value ofoldrule
must match an existing search rule; this argument is case-sensitive. The rule
specified in this argument cannot be an administrator rule. To place a search
rule at the beginning of a search list, specify a null string () for this argument.

newjrule
INPUT. The search rule that you wish to add to the search list. This rule is
added immediately before the rule specified in the oldrule argument.
newrule can be a pathname, an optional search rule, or a search rule keyword
variable, but cannot be a -system or -insert keyword.

code
OUTPUT. Standard error code. Possible values are

E$OK Operation succeeded.

E$BPAR Search rule to be added is invalid, for example, [garbage].

E$LIST Specified search list does not exist.

E$RULE The rule specified in oldrule cannot be located. Either the
rule does not exist or it was specified in the wrong case.

E$ADMN Attempting to add a rule before an administrator rule.

Second Edition 7-19

SR$ADDB

Subroutines Reference II: File System

Discussion

SR$ADDB is used to add a single search rule before an existing search rule in a
search list. It can also be used to add a single search rule at the beginning of a
search list. To add a single search rule after an existing rule or at the end of a
search list, use SR$ADDE. To append multiple search rules to an existing search
list, use SR$SSR.

SR$ADDB cannot be used to add a rule before an administrator rule. It also
cannot be used to add a rule that inserts multiple rules (such as the -system or
-insert keywords). Use SR$SSR to add an -insert or-system keyword to an
existing search list.

Exampies

The following two examples perform identical operations; the first example is
written in PL/I, the second in FORTRAN 77. Each of these examples adds the
search rule [origin_dir] to the beginning of the MYLIST search list.

/* Sample PL/1 program for the SR$ADDB subroutine */

ADD_RULE: PROCEDURE OPTIONS(MAIN);
DCL SR$ADDB EXTERNAL ENTRY (CHAR(32) VAR, CHAR(128) VAR,

CHAR(128) VAR, FIXED BIN);
DCL LIST CHAR(32) VARYING STATIC INIT('MYLIST');
DCL ORULE CHAR(128) VARYING STATIC INIT(");
DCL NRULE CHAR(128) VARYING STATIC INIT('[ORIGIN_DIR]');
DCL CODE FIXED BIN;
CALL SR$ADDB(LIST, ORULE, NRULE, CODE);
IF (CODE = 0)
THEN

PUT SKIP LIST('Rule added to search list');
ELSE

PUT SKIP LIST('Error code: ', CODE);
PUT SKIP;
END ADD RULE;

7-20 Second Edition

SR$ADDB

Search Rules

C Sample FORTRAN 77 program for the SR$ADDB subroutine

C Declarations
INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*2 OSIZE, OPLUS(128)
CHARACTER*128 ORULE
INTEGER*2 NSIZE, NPLUS(128)
CHARACTER*128 NRULE
INTEGER*2 CODE

C Equivalences
EQUIVALENCE (LSIZE, LPLUS(l))
EQUIVALENCE (LPLUS(2), LIST)
EQUIVALENCE (OSIZE, OPLUS(l))
EQUIVALENCE (OPLUS(2), ORULE)
EQUIVALENCE (NSIZE, NPLUS(1))
EQUIVALENCE (NPLUS(2), NRULE)

C Assignments
LIST(1:6) = 'MYLIST'
LSIZE = 6
ORULE(1:12) = ''
OSIZE = 12
NRULE(1:12) = '[ORIGIN_DIR]'
NSIZE = 12

C Subroutine call
CALL SR$ADDB(LPLUS, OPLUS, NPLUS, CODE)
IF (CODE.NE.O) GO TO 10
PRINT *, 'Rule added to search list'
CALL EXIT

C Error processing
10 PRINT *, 'Error code ', CODE

CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 7-21

SR$ADDE

Subroutines Reference II: File System

SR$ADDE
SR$ADE

Adds a search rule to the end of a search list or adds a search rule after a
specified rule in a search list.

Usage

DCL SR$ADDE EXTERNAL ENTRY (CHAR(32) VAR, CHAR(128)
VAR, CHAR(128) VAR, FIXED BIN);

CALL SR$ADDE (listjname, old_rule, new_rule, code);

Parameters

listjname
INPUT. The name of the search list to which you wish to add a search rule.

old_rule
INPUT. An existing rule in the search list. SR$ADDE adds the new rule
immediately after the rule specified in this argument. The value of this
argument must match an existing search rule; this argument is case-sensitive.
The rule specified in this argument cannot be an administrator rule, unless it is
the last administrator rule in the search list. To place a search rule at the end
of a search list, specify a null string () for this argument.

newjrule
INPUT. The search rule that you wish to add to the search list. This rule is
added immediately after the rule specified in the old_rule argument.
new_rule can be a pathname, an optional search rule, or an [origin_dir],
[home_dir], or [referencing_dir] keyword. new_rule cannot be a -system or
-insert keyword.

code
OUTPUT. Standard error code. Possible values are

E$OK Operation succeeded.

E$BPAR Search rule to be added is invalid, for example, [garbage].

E$LIST Specified search list does not exist.

7-22 Second Edition

SR$ADDE

Search Rules

E$RULE The search rule specified in old rule cannot be located.
Either the rule does not exist or it was specified in the
wrong case.

E$ADMN Attempting to add a rule before an administrator rule.

Discussion

SR$ADDE is used to add a single search rule after an existing search rule in a
search list. It can also be used to add a single search rule at the end of a search
list. To add a single search rule before an existing rule or at the beginning of a
search list, use SR$ADDB. To append multiple search rules to an existing search
list, useSR$SSR. SR$SSR can also be used to add an -insert or -system
keyword to an existing search list.

Examples

The following two examples perform identical operations; the first example is
written in PL/I, the second in FORTRAN 77. Each of these examples adds the
search rule MYDIR>TOOLS immediately after thesearch rule [origin_dir] in the
MYLIST search list.

/* Sample PL/I program for the SR$ADDE subroutine */

ADD_RULE: PROCEDURE OPTIONS(MAIN);
DCL SR$ADDE EXTERNAL ENTRY (CHAR(32) VAR, CHAR(128) VAR,

CHAR(128) VAR, FIXED BIN);
DCL LIST CHAR(32) VAR STATIC INIT('MYLIST');
DCL ORULE CHAR(128) VAR STATIC INIT('[ORIGIN_DIR]');
DCL NRULE CHAR(128) VAR STATIC INIT('MYDIR>TOOLS');
DCL CODE FIXED BIN;
CALL SR$ADDE(LIST, ORULE, NRULE, CODE);
IF (CODE = 0)
THEN

PUT SKIP LIST('Rule added to search list') ;
ELSE

PUT SKIP LISTCError code: ', CODE);
PUT SKIP;
END ADD RULE;

Second Edition 7-23

SR$ADDE

Subroutines Reference II: File System

C Sample FORTRAN 77 program for the SR$ADDE subroutine

C Declarations
INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*2 OSIZE, OPLUS(128)
CHARACTER*128 ORULE
INTEGER*2 NSIZE, NPLUS(128)
CHARACTER*128 NRULE
INTEGER*2 CODE

C Equivalences
EQUIVALENCE (LSIZE, LPLUS(l))
EQUIVALENCE (LPLUS(2), LIST)
EQUIVALENCE (OSIZE, OPLUS(1))
EQUIVALENCE (OPLUS(2), ORULE)
EQUIVALENCE (NSIZE, NPLUS(1))
EQUIVALENCE (NPLUS(2), NRULE)

C Assignments
LIST(1:6) = 'MYLIST'
LSIZE = 6
ORULE(l:14) = '[ORIGIN_DIR]'
OSIZE = 14
NRULE(1:14) = 'MYDIR>TOOLS'
NSIZE = 14

C Subroutine call
CALL SR$ADDE(LPLUS, OPLUS, NPLUS, CODE)
IF (CODE.NE.O) GO TO 10
PRINT *, 'Rule added to search list'
CALL EXIT

C Error processing
10 PRINT *, 'Error code ', CODE

CALL EXIT
END

Loading and Linking information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

7-24 Second Edition

SR$CREAT

Search Rules

SR$CREAT
SR$CRE

Creates a blank search list.

Usage

DCL SR$CREAT EXTERNAL ENTRY (CHAR(32) VAR, FIXED BIN);

CALL SR$CREAT (list_name, code);

Parameters

list_name
INPUT. The name of the search list that PRIMOS should create. A search list
name should not exceed 22 characters.

code
OUTPUT. Standard error code. Possible values are

E$OK Operation succeeded.

E$EXST The search list specified already exists.

E$LIST The search list name specified is an invalid name.

Discussion

SR$CREAT creates a blank search list; that is, a search list that does not contain
any user-specified or system default search rules. This search list does, however,
contain administrator rules if the System Administrator has established
administrator rules for the search list.

Examples

The following two examples perform identical operations; the first example is
written in PL/I, the second in FORTRAN 77. Each of these examples creates the
MYLIST search list.

Second Edition 7-25

SR$CREAT

Subroutines Reference II: File System

/* Sample PL/I program for the SR$CREAT subroutine */

CREATE_SEARCH_LIST: PROCEDURE OPTIONS(MAIN);
DCL SR$CREAT EXTERNAL ENTRY (CHAR(32) VAR, FIXED BIN);
DCL LIST CHAR(32) VARYING STATIC INIT('MYLIST');
DCL CODE FIXED BIN;
CALL SR$CREAT(LIST, CODE);
IF (CODE = 0)
THEN

PUT SKIP LIST('Search list created');
ELSE

PUT SKIP LIST('Error code: ', CODE);
PUT SKIP;
END CREATE SEARCH LIST;

C Sample FORTRAN 77 program for the SR5CREAT subroutine

C Declarations
INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*2 CODE

C Equivalences
EQUIVALENCE (LSIZE, LPLUS(D)
EQUIVALENCE (LPLUS(2), LIST)

C Assignments
LIST(1:6) = 'MYLIST'
LSIZE = 6

C Subroutine call
CALL SR$CREAT(LPLUS, CODE)
IF (CODE.NE.0) GO TO 10
PRINT *, 'Search list created'
CALL EXIT

C Error processing
10 PRINT *, 'Error code ', CODE

CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

7-26 Second Edition

SR$DEL

SR$DEL

Search Rules

Deletes a specified search list.

Usage

DCL SR$DEL EXTERNAL ENTRY (CHAR(32) VAR, FIXED BIN);

CALL SR$DEL (list_name, code);

Parameters

list_name
INPUT. The name of the search list to be deleted.

code
OUTPUT. Standard error code. Possible values are

E$OK Operation succeeded.

E$LIST The specified list could not be located.

Discussion

SR$DEL completely deletes a search list. Both the user's search list and its
contents (including administrator rules) are deleted. The search rules file that
was used to set the search list is unaffected.

Examples

The following two examples perform identical operations; the first example is
written in PL/I, the second in FORTRAN 77. Each of these examples deletes the
MYLIST search list.

/* Sample PL/I program for the SR$DEL subroutine */
DELETE_SEARCH_LIST: PROCEDURE OPTIONS(MAIN);
DCL SR$DEL EXTERNAL ENTRY (CHAR(32) VAR, FIXED BIN);
DCL LIST CHAR(32) VARYING STATIC INIT('MYLIST');
DCL CODE FIXED BIN;
CALL SR$DEL(LIST, CODE);
IF (CODE = 0)
THEN

PUT SKIP LIST(ASearch list deleted');
ELSE

PUT SKIP LISTTError code: ', CODE);
PUT SKIP;
END DELETE SEARCH LIST;

Second Edition 7-27

SR$DEL

Subroutines Reference II: File System

C Sample FORTRAN 77 program for the SR$DEL subroutine

C Declarations
INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*2 CODE

C Equivalences
EQUIVALENCE (LSIZE, LPLUS(l))
EQUIVALENCE (LPLUS(2), LIST)

C Assignments
LIST(1:6) = 'MYLIST'
LSIZE = 6

C Subroutine call
CALL SR$DEL(LPLUS, CODE)
IF (CODE.NE.O) GO TO 10
PRINT *, 'Search list deleted'
CALL EXIT

C Error processing
10 PRINT *, 'Error code ', CODE

CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

7-28 Second Edition

SR$DSABL

Search Rules

SR$DSABL
SR$DSA

SR$DSABL disables an optional search rule that was enabled by SR$ENABL.
This subroutine reverses a single SR$ENABL operation. Compare with
SRSABSDS.

Usage

DCL SR$DSABL EXTERNAL ENTRY (CHAR(128) VAR,
CHAR(32) VAR, FIXED BIN);

CALL SR$DSABL (rule, listjiame, code);

Parameters

rule
INPUT. The search rule to be disabled. The search rule should not include
the -optional keyword. This argument is case-sensitive.

list_name
INPUT. The name of the search list in which the rule is located.

code
OUTPUT. Standard error code. Possible values are

E$OK Operation succeeded. This return code does not indicate
whether or not the rule is actually disabled. SR$DSABL
returns E$OK if the rule is still enabled due to multiple
nested SR$ENABL calls, or if the rule was never enabled.

E$LIST Search list does not exist.

E$RULE Search rule cannot be located. Rule may be nonexistent or
specified in the wrong case.

E$NTOP Rule specified is not an optional rule.

Discussion

SR$DSABL is used to disable an optional search rule in a search list. An
optional search rule is a rule prefaced by the -optional keyword in the search
rules file. Such rules are initially disabled when the search rules file is used to
set the search list. PRIMOS ignores disabled search rules when performing a

Second Edition 7-29

SR$DSABL

Subroutines Reference II: File System

search operation on a search list. You can enable an optional search rule using
SR$ENABL. SR$DSABL is used to disable a rule that has been enabled using
SR$ENABL.

SR$ENABL can be invoked repetitively for the same search rule. PRIMOS
compares the number of calls to SR$ENABL with the number of calls to
SR$DSABL. Each SR$DSABL call disables one SR$ENABL call; therefore,
to disable a rule, you must invoke SR$DSABL as many times as you invoked
SR$ENABL.

You can also issue multiple SR$DSABL calls against a search rule, causing the
search rule to be repetitively disabled. To enable such a rule, you must issue one
more SR$ENABL call than the number of SR$DSABL calls you issued. A
single call to SR$ABSDS reverses multiple SR$ENABL or SR$DSABL calls.

Examples

The following two examples perform identical operations; the first example is
written in PL/I, the second in FORTRAN 77. Each of these examples disables
the MYDIR>OPTTESTS search rule in the MYLIST search list.

/ * S a m p l e P L / I p r o g r a m f o r t h e SR$DSABL s u b r o u t i n e * /

DSABL_SUB: PROCEDURE;
DCL SR$DSABL EXTERNAL ENTRY(CHAR(128) VAR, CHAR(32) VAR,

FIXED BIN) ;
DCL RULE CHAR(128) VAR STATIC I N I T (' M Y D I R > O P T T E S T S ') ;
DCL LIST CHAR(32) VAR STATIC I N I T (' M Y L I S T ') ;
DCL CODE FIXED BIN;
CALL SR$DSABL(RULE, L I S T , CODE);
I F (CODE = 0)
THEN

PUT SKIP L I S T (' O p t i o n a l r u l e d i s a b l e d ') ;
ELSE

PUT SKIP L I S T (' E r r o r c o d e : ' , CODE);
PUT S K I P ;
END;

C S a m p l e FORTRAN 77 p r o g r a m f o r t h e SR$DSABL s u b r o u t i n e
C D e c l a r a t i o n s

INTEGER*2 RULESIZE, RULEPLUS(128)
CHARACTER*128 RULE
INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*2 CODE

C E q u i v a l e n c e s
EQUIVALENCE (RULESIZE, RULEPLUS(1))
EQUIVALENCE (RULEPLUS(2) , RULE)

7-30 Second Edition

SR$DSABL

Search Rules

c
10

EQUIVALENCE (LSIZE, LPLUS(1))
EQUIVALENCE (LPLUS(2), LIST)

Assignments
LIST(1:6) = 'MYLIST'
LSIZE = 6
RULE(1:15) = 'MYDIR>OPTTESTS'
RULESIZE = 1 5

Subroutine call
CALL SR$DSABL(RULEPLUS, LPLUS, CODE)
IF (CODE.NE.0) GO TO 10
PRINT *, 'Optional rule disabled'
CALL EXIT

Error processing
PRINT *, 'Error code ', CODE
CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 7-31

SR$ENABL

Subroutines Reference II: File System

SR$ENABL
SR$ENA

Enables an optional search rule. Enabled rules can be disabled using
SR$DSABL or SR$ABSDS.

Usage

DCL SR$ENABL EXTERNAL ENTRY (CHAR(128) VAR,
CHAR(32) VAR, FIXED BIN);

CALL SR$ENABL (rule, list_name, code);

Parameters

rule
INPUT. The search rule to be enabled. The search rule specified here should
be identical to an optional rule in the search list. The search rule specified in
this argument should not include the -optional keyword. This argument is
case-sensitive.

list_name
INPUT. The name of the search list in which the rule is located.

code
OUTPUT. Standard error code. Possible values are

E$OK Operation succeeded.

E$LIST Search list does not exist.

E$RULE Search rule cannot be located. Rule may be nonexistent or
specified in the wrong case.

E$NTOP Rule specified is not an optional rule.

Discussion

An optional search rule is a rule prefaced by the -optional keyword in the search
rules file. Such rules are initially disabled when the search rules file is used to
set the search list. PRIMOS ignores disabled search rules when performing a
search operation. When enabled, these search rules function as ordinary search
rules. The same search rule can be repeatedly disabled and enabled. Only
optional search rules can be disabled or enabled.

7-32 Second Edition

SR$ENABL

Search Rules

You can check for the existence of a disabled search rule using the SR$EXSTR
subroutine and display disabled search rules using the SR$READ subroutine.
Disabled search rules are not displayed by the SR$NEXTR subroutine or the
LIST_SEARCH_RULES command. You can examine enabled search rules
using any of these subroutines or the LIST_SEARCH_RULES command. An
enabled search rule appears as an ordinary rule in a search list.

You use SR$ENABL to enable an optional search rule. You can use
SR$DSABL or SR$ABSDS to disable a rule that has been enabled using
SR$ENABL.

SR$ENABL calls can be nested; that is, your program can invoke SR$ENABL
repetitively for the same search rule. SR$DSABL disables one invocation of
SR$ENABL. To disable a rule you must call SR$DSABL as many times as
SR$ENABL was called to enable the rule. SR$ABSDS absolutely disables an
enabled search rule. That is, one invocation of SR$ ABSDS disables the rule,
regardless of how many times the rule had been enabled.

PRIMOS compares the number of SR$ENABL calls and SR$DSABL calls. You
can issue multiple SR$DSABL calls against a disabled search rule. To enable a
search rule disabled in this way, you must issue one more SR$ENABL call than
the number of SR$DSABL calls you issued. A single call to SR$ABSDS
reverses multiple SR$ENABL or SR$DSABL calls.

Examples

The following two examples perform identical operations; the first example is
written in PL/I, the second in FORTRAN 77. Each of these examples enables
the MYDIR>OPTTESTS search rule in the MYLIST search list.

/ * S a m p l e P L / I p r o g r a m f o r t h e SR$ENABL s u b r o u t i n e * /

ENABL_SUB: PROCEDURE;
DCL SR$ENABL EXTERNAL ENTRY(CHAR(128) VAR, CHAR(32) VAR,

FIXED BIN) ;
DCL RULE CHAR(128) VAR STATIC I N I T (' M Y D I R > O P T T E S T S ') ;
DCL LIST CHAR(32) VAR STATIC I N I T (' M Y L I S T ') ;
DCL CODE FIXED BIN;
CALL SR$ENABL(RULE, L I S T , CODE);
I F (CODE = 0)
THEN

PUT SKIP L I S T (' O p t i o n a l r u l e e n a b l e d ') ;
ELSE

PUT SKIP L I S T (' E r r o r c o d e : ' , CODE);
PUT S K I P ;
END;

Second Edition 7-33

SR$ENABL

Subroutines Reference II: File System

C Sample FORTRAN 77 program for the SR$ENABL subroutine

C Declarations
INTEGER*2 RULESIZE, RULEPLUS(128)
CHARACTER*128 RULE
INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*2 CODE

C Equivalences
EQUIVALENCE (RULESIZE, RULEPLUS(1))
EQUIVALENCE (RULEPLUS(2), RULE)
EQUIVALENCE (LSIZE, LPLUS(l))
EQUIVALENCE (LPLUS(2), LIST)

C Assignments
LIST(1:6) = 'MYLIST'
LSIZE = 6
RULE(1:15) = 'MYDIR>OPTTESTS'
RULESIZE =15

C Subroutine call
CALL SR$ENABL(RULEPLUS, LPLUS, CODE)
IF (CODE.NE.O) GO TO 10
PRINT *, 'Optional rule enabled'
CALL EXIT

C Error processing
10 PRINT *, 'Error code ', CODE

CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

7-34 Second Edition

SR$EXSTR
SR$EXS

SR$EXSTR

Search Rules

Determines if a search rule exists in a specified search list.

Usage

DCL SR$EXSTR EXTERNAL ENTRY (CHAR(128) VAR, FIXED BIN,
CHAR(32) VAR, BIT(l) ALIGNED)
RETURNS(BIT(1) ALIGNED);

rule_exists = SR$EXSTR (rule, rule_type, listjname, case_sensitive);

Parameters

rule
INPUT. The search rule to be checked for existence in the specified search
list.

rulejype
INPUT. Type of search rule to be checked. The following are available
search rules types:

K$TEXT Rule is an ordinary text string.

K$HMDR Rule is the [home_dir] keyword.

K$ORDR Rule is the [origin_dir] keyword.

K$RFDR Rule is the [referencing_dir] keyword.

K$KEYW Rule is a keyword that begins with a hyphen.

K$ANYTYPE Rule can be either an ordinary text string or a keyword.

list_name
INPUT. The name of the search list that PRIMOS should search for the
specified rule.

case_sensitive
INPUT. Specifies whether the comparison of rule and the rules in the search
list should be case-sensitive or case-insensitive. ' 1 'b specifies case-sensitive;
'O'b specifies case-insensitive. If case-sensitive, the search rules mydir>test
and MYDIR>TEST are different rules; if case-insensitive, these two search
rules are equivalent.

Second Edition 7-35

SR$EXSTR

Subroutines Reference II: File System

rule_exists
RETURNED VALUE. Indicates the success or failure of the operation.' 1 *b
indicates that the specified search rule was found in the search list. 'O'b
indicates that the search rule could not be found.

Discussion

SR$EXSTR determines whether a specified search rule exists in a search list.
This search rule can be a pathname, an optional search rule, or a search rule
keyword. This subroutine determines the existence of both disabled and enabled
optional search rules.

When checking for the existence of a keyword, you must set both rule and
ruletype:

• If the search rule sought is a keyword that begins with a hyphen, set rule to
the keyword literal (including the hyphen) and ruletype to K$KEYW.
Search rule keywords are not case-sensitive.

• If the search rule sought is [home_dir], [origin_dir], or [referencing_dir],
set rule to null and rulejype to the type for that keyword.

• If the search rule sought combines a keyword variable and a partial
pathname, such as [origin_dir]>TOOLS, set rule to the pathname portion
of the search rule (in this case, rules = TOOLS), and set rulejype to the
type for the keyword variable (in this case, ruletype = K$ORDR). The
rule argument should not begin with an angle bracket (>).

SR$EXSTR can only check for a keyword as a literal; it cannot check for the
current value assigned to a keyword. SR$EXSTR cannot locate the -insert or
-system search rule keywords. Do not specify the -optional keyword when
determining the existence of an optional search rule.

SR$EXSTR may indicate that a search rule is unbeatable for several reasons:

• The search list that you specified may not exist.

• The search rule may not exist in the search list specified.

• The search rule may be of a different type than the one specified in
ruletype.

If you set the case sensitive argument, the search rule that you specified in rule
and the search rule in the search list may differ in case.

Examples

The following two examples perform identical operations; the first example is
written in PL/I, the second in FORTRAN 77. Each of these examples checks for

7-36 Second Edition

SR$EXSTR

Search Rules

the existence of the MYDIR>TOOLS search rule in the MYLIST search list.
The test is case-insensitive.

/* Sample PL/I program for the SR$EXSTR subroutine */

EXIST_SUB: PROCEDURE;
%INCLUDE 'SYSCOM>KEYS.PL1' ;
DCL SR$EXSTR EXTERNAL ENTRY(CHAR(128) VAR, FIXED BIN,

CHAR(32) VAR,
BIT(l) ALIGNED) RETURNS(BIT(1)
ALIGNED);

DCL RULE CHAR(128) VAR STATIC INIT(,MYDIR>TOOLS');
DCL TYPE FIXED BIN;
DCL LIST CHAR(32) VAR STATIC INIT('MYLIST');
DCL CASE BIT(l) ALIGNED STATIC INIT('O'b);
DCL EXIST BIT(l) ALIGNED;
EXIST = SR$EXSTR(RULE, K$TEXT, LIST, CASE);
PUT SKIP LIST('Existence of rule is: ', EXIST);
PUT SKIP;
END;

C Sample FORTRAN 77 program for the SR$EXSTR subroutine
$INSERT SYSCOM>KEYS.INS.FTN
C Declarations

INTEGER*2 RULESIZE, RULEPLUS(128)
CHARACTER*128 RULE
INTEGER*2 TYPE
INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*2 CASE
INTEGER*2 EXIST

C Equivalences
EQUIVALENCE (RULESIZE, RULEPLUS(1))
EQUIVALENCE (RULEPLUS(2), RULE)
EQUIVALENCE (LSIZE, LPLUS(D)
EQUIVALENCE (LPLUS(2), LIST)

C Assignments
LIST(1:6) = ,MYLIST'
LSIZE = 6
RULE(1:18) = *MYDIR>TOOLS'
RULESIZE = 1 8
CASE = :000000

C Subroutine call
EXIST = SR$EXSTR(RULEPLUS, K$TEXT, LPLUS, CASE)
IF (EXIST.EQ.O) GO TO 10
PRINT *, "Rule exists', EXIST
CALL EXIT

10 PRINT *, 'Rule does not exist', EXIST
CALL EXIT
END

Second Edition 7-37

SR$EXSTR

Subroutines Reference II: File System

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

7-38 Second Edition

SR$FR_LS

Search Rules

SR$FR_LS
SR$FRL

Frees the space allocated to a linked list structure by SR$LIST or SRSREAD.

Usage

DCL SR$FR LS EXTERNAL ENTRY (PTR, FIXED BIN);

CALL SR$FR_LS (structure_ptr, code);

Parameters

structure_ptr
INPUT. A pointer to the structure to be freed. You set this pointer value
using the value of the output_ptr argument of SR$LIST or SR$READ.

code
OUTPUT. Standard error code. Possible values are

E$OK Operation succeeded.

E$BDAT Encountered invalid pointer.

Discussion

SR$FR_LS frees space allocated by the SR$LIST and SR$READ subroutines.
You should invoke SR$FR_LS after every successful invocation of SR$LIST or
SRSREAD. If either SR$LIST or SR$READ fails (that is, returns a nonzero
value for the code argument) no space is allocated, and SR$FR_LS does not
need to be invoked.

SR$FR_LS deletes a structure by following the structure's internal pointers. It
does not examine the contents of the other entry fields in the structure. If
SR$FR_LS encounters an invalid pointer, it returns an E$BDAT error code. The
subroutine may have already freed part of the linked list when it encountered the
invalid pointer.

Examples

The following two examples perform identical operations; the first example is
written in PL/I, the second in FORTRAN 77. Each of these examples frees
storage space allocated by the SRSREAD subroutine.

Second Edition 7-39

SR$FR_LS

Subroutines Reference II: File System

/* Sample PL/I program for the SR$FR_LS subroutine */

FREE_LIST_STRUCTURE: PROCEDURE OPTIONS(MAIN);
DCL SR$FR_LS EXTERNAL ENTRY (PTR, FIXED BIN);
DCL LOC PTR;
DCL CODE FIXED BIN;
DCL SR$READ EXTERNAL ENTRY (FIXED BIN, CHAR(32) VAR, PTR,

FIXED BIN);
CALL SR$READ(VER, 'MYLIST', LOC, CODE);

CALL SR$FR_LS(LOC, CODE);
IF (CODE = 0)
THEN

PUT SKIP LIST('List structure space freed');
ELSE

PUT SKIP LISTCError code: ', CODE) ;
PUT SKIP;
END FREE_LIST_STRUCTURE;

C Sample FORTRAN 77 program for the SR$FR_LS subroutine

C Declarations
INTEGER*4 PTR
INTEGER*2 CODE

C Create the structure to be freed
10 CALL SR$LIST(INTS(1), PTR, CODE)

C Call SR$FR_LS subroutine
20 CALL SR$FR_LS(PTR, CODE)

IF (CODE.NE.0) GO TO 30
PRINT *, 'List structure space freed'
CALL EXIT

C Error processing
30 PRINT *, 'Error code ', CODE

CALL EXIT
END

Loading and Linking information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: Not available.

7-40 Second Edition

SR$INIT

Search Rules

SR$INIT
SR$INI

SR$INIT initializes all search lists to system defaults.

Usage

DCL SR$INIT EXTERNAL ENTRY (FIXED BIN);

CALL SR$INIT (code);

Parameters

code
OUTPUT. Standard error code. Because SR$INIT can initialize multiple
search lists, multiple errors can occur. The returned error code indicates only
the most recently encountered of these errors. Possible values are

E$OK Operation succeeded. All search lists initialized.

E$FNTF A system default file contains an -insert keyword that
refers to a nonexistent file. One or more search lists have
not been initialized. Search lists not in error have been
initialized.

E$NEST A system default file contains an -insert keyword that
invokes a circular reference. One or more search lists have
not been initialized. Search lists not in error have been
initialized.

Discussion

SR$ENIT initializes all of the user's search lists to system defaults. System
default rules include all rules found in directory SEARCH_RULES*, including
system rules and administrator rules. If no system defaults exist for a search list,
SR$INIT deletes that search list. If an error occurs during initialization,
SR$INIT sets the code argument and does not initialize the list in error; it
proceeds to initialize to system defaults all lists that are not in error.

Examples

The following two examples perform identical operations; the first example is
written in PL/I, the second in FORTRAN 77. Each of these examples initializes

Second Edition 7-41

SR$INIT

Subroutines Reference II: File System

all of the user's search lists. Search lists with system defaults are reset to default
rules. Search lists without system defaults are deleted.

/* Sample PL/I program for the SR$INIT subroutine */
INITIALIZE_SEARCH_LISTS: PROCEDURE OPTIONS(MAIN);
DCL SR$INIT EXTERNAL ENTRY (FIXED BIN);
DCL CODE FIXED BIN;
CALL SR$INIT(CODE);
IF (CODE = 0)
THEN

PUT SKIP LIST('Search lists initialized');
ELSE

PUT SKIP LIST('Error code: ', CODE);
PUT SKIP;
END INITIALIZE SEARCH LISTS;

C Sample FORTRAN 77 program for the SR$INIT subroutine

C Declarations
INTEGER*2 CODE

C Subroutine call
CALL SR$INIT(CODE)
IF (CODE.NE.0) GO TO 10
PRINT *, 'Search lists initialized'
CALL EXIT

C Error processing
10 PRINT *, 'Error code ', CODE

CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

7-42 Second Edition

SR$LIST
SR$LIS

SR$LIST

Search Rules

Returns the names of the user's search lists.

Usage

DCL SR$LIST EXTERNAL ENTRY (FIXED BIN, PTR, FIXED BIN);

CALL SR$LIST (version, outputjptr, code);

Parameters

version
INPUT. The version number of the requested structure. Different version
numbers are assigned to structures with fields of differing lengths. For Rev.
21.0, set this argument to 1.

outputjptr
OUTPUT. Pointer to a structure used to hold the search list names. This
structure contains one entry for each of the user's search lists. If the user has
no search lists, this pointer is set to null. See Structure Description below.

code
OUTPUT. Standard error code. Possible values are

E$OK Operation succeeded.

E$BVER Version number is invalid.

Structure Description

The parameter output_ptr points to a structure, list_struc, as follows:

DCL 1 list_struc,
2 version FIXED BIN,
2 length FIXED BIN,
2 next PTR OPTIONS(SHORT),
2 list_name CHAR(32) VAR,
2 template CHAR(128) VAR;

version

INPUT. The version number of the structure (for Rev. 21.0 and later
revisions, the version number is always 1).

Second Edition 7-43

SR$LIST

Subroutines Reference II: File System

length
INPUT. The length of a structure entry (always 172 bytes).

next
OUTPUT. A pointer to the next entry. If this is the last entry, the value is
null.

list_name
OUTPUT. The name of the search list.

template
OUTPUT. The pathname of the search rules file used to set the search list.
Only one pathname is listed, even if multiple search rule files were used to set
the search list. If the search list contains system rules and administrator rules,
template is the search rule file for the system rules. If the search list contains
user-specified rules, template is the user's search rules file supplied to
SR$SSR or the SET_SEARCH_RULES command.

Discussion

SR$LIST copies information about all of the user's search lists into a
user-specified structure. SR$LIST creates a separate structure entry for each of
the user's search lists.

It is the user's responsibility to free the space allocated for the structure used by
SR$LIST. This space can be freed using the SR$FR_LS subroutine.

Examples

The following two examples perform identical operations; the first example is
written in PL/I, the second in FORTRAN 77. Each of these examples creates the
structure LISTSTRUC and copies into it a separate entry for the name of each of
the user's search lists.

/* Sample PL/I program for the SR$LIST subroutine */
LIST_NAMES: PROCEDURE;
DCL SR$LIST EXTERNAL ENTRY(FIXED BIN, PTR, FIXED BIN);
DCL VER FIXED BIN STATIC INIT('l');
DCL LOC PTR;
DCL CODE FIXED BIN;
DCL 1 LISTSTRUC BASED(LOC),

2 VERSION FIXED BIN,
2 LENGTH FIXED BIN,
2 NEXT PTR OPTIONS(SHORT),
2 LIST CHAR(32) VAR,
2 TEMPLATE CHAR(128) VAR;

CALL SR$LIST(VER, LOC, CODE);

7-44 Second Edition

r
r

SR$LIST

Search Rules

IF (CODE = 0)
THEN BEGIN;

DO WHILE (LOC A= NULL());
PUT SKIP LIST('List name: ', LIST);
PUT SKIP LISTCSearch rules file: ', TEMPLATE);
LOC = NEXT;
END;

END;
ELSE

PUT SKIP LISTCError code: ', CODE);
PUT SKIP;
END;

C Sample FORTRAN 77 program for the SR$LIST subroutine

C Declarations
INTEGER*4 PTR, NPTR, PTRl
INTEGER*2 CODE, LISTL, FILEL

C Establish space for output structure
INTEGER*2 LISTSTRUC(86)
CHARACTER*32 LIST
CHARACTER*128 FILE

C Redefine the structure entries
EQUIVALENCE (NPTR, LISTSTRUC(3))
EQUIVALENCE (LISTL, LISTSTRUC(5)),

(LIST, LISTSTRUC(6))
EQUIVALENCE (FILEL, LISTSTRUC(22)),

(FILE, LISTSTRUC(23))
C Subroutine call

CALL SR$LIST(INTS(1), PTR, CODE)
IF (CODE.NE.O) GO TO 30
PTRl = PTR

C Keep analyzing until the pointer is null
10 IF (AND(PTR,:1777600000).EQ.:1777600000) GO TO 20
C Copy the structure to place where we can access it

CALL MOVEW$(PTR, LOC(LISTSTRUC), INTS(86))
PRINT *, 'List name: ', LIST(1:LISTL)
PRINT *, 'Search rules file: ', FILE(1:FILEL)
PRINT *
PTR = NPTR
GO TO 10

C Normal exit
20 CALL SR$FR_LS(PTRl, CODE)

IF (CODE.NE.O) GO TO 30
CALL EXIT

C Error processing
30 PRINT *, 'Error code ', CODE

CALL EXIT
END

Second Edition 7-45

SR$LIST

Subroutines Reference II: File System

Loading and Linking information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

7-46 Second Edition

SR$NEXTR

Search Rules

SR$NEXTR
SR$NEX

Reads the next rule from a search list.

Usage

DCL SR$NEXTR EXTERNAL ENTRY (CHAR(32) VAR,
FIXED BIN(31), CHAR(128) VAR, PTR,
FIXED BIN, CHAR(128) VAR,
FIXED BIN) RETURNS (FIXED BIN(31));

currjrulejiandle - SR$NEXTR (Ustjiame, prevjrulejiandle,
referencing_dir, locator, rulejype, rule, code)',

Parameters

listjiame
INPUT. The name of the search list containing the rules to be read.

pre v_rule_handle
INPUT. The point in the search list at which to start reading. Use the value
K$BGN to read the first rule in the search list. To read other rules in the
search list, use the value of the curr rule handle argument from a previous
invocation of SR$NEXTR.

referencing_dir

INPUT. A search rule to substitute for the [referencing_dir] keywords in the
search list. You establish either a search rules string or the null value for this
argument. The search rule that you specify is substituted into the search list;
then the read operation is performed on this modified search list. If you
specify the null value, SR$NEXTR skips over any search rule containing the
[referencing_dir] keyword and reads the next rule in the search list. The value
you establish for [referencing_dir] keywords only applies to the current
invocation of SR$NEXTR.

locator
OUTPUT. This argument reads the locator value established for the search
rule. PRIMOS sets the locator values for search rules in the ENTRY$ search
list. You can use the SR$SETL subroutine to set locator values for rules in
user-defined search lists and the ENTRY$ search list. Locators are not set for
other search lists. If a locator value for a rule is not set, this argument defaults
to null.

Second Edition 7-47

SR$NEXTR

Subroutines Reference II: File System

rulejype
OUTPUT. The type of search rule read. Possible values are

Rule is an ordinary text string.

Rule is the [home_dir] keyword.

Rule is the [origin_dir] keyword.

Rule is the [referencing_dir] keyword.

Rule is a keyword that begins with a hyphen.

K$TEXT

K$HMDR

K$ORDR

K$RFDR

K$KEYW

1

2

3

4

8

rule
OUTPUT. The search rule read by this operation. If the search rule in the list
is [origin_dir], rule returns the name of the origin directory. If the search rule
in the list is [home_dir], rule returns an asterisk (*). If the search rule in the
list is [referencing_dir], rule returns the pathname supplied by the
referencing dir argument. SR$NEXTR skips over [referencing_dir] rules that
are set to the null value and disabled optional search rules. If the search rule
is some other keyword (such as -added_disks), rule returns the keyword itself.

code
OUTPUT. Standard error code. Possible values are

E$OK Operation succeeded.

E$LIST Search list specified does not exist.

E$EOL Attempting to read beyond the end of the list.

curr_rule_handle
RETURNED VALUE. The internal handle of the rule read by this operation.
To read the next rule, you input this currrulejiandle value to the
prev rule handle for the next invocation of SR$NEXTR. If SR$NEXTR is
invoked when there are no more rules in the list, this argument is set to
K$END.

Discussion

SR$NEXTR is used to sequentially read the rules in a search list, one rule at a
time. Each invocation of SR$NEXTR reads one rule. To read all of the rules in
a search list in one operation, use SR$READ.

Usually, SR$NEXTR is invoked in a program loop, in which the first invocation
reads the first rule in the search list and returns its value and address. The next
invocation of SR$NEXT uses this output address as its input, and returns the
second search rule's value and address. Each invocation takes the value of

7-48 Second Edition

SR$NEXTR

Search Rules

currrulehandle from the previous call to SR$NEXTR and uses that as the
prev_rule handle input.

SR$NEXTR reads locator pointer values. To set a locator pointer value, you use
SR$NEXTR to supply the address of a search rule to the SR$SETL subroutine.
For further details, refer to SR$SETL.

SR$NEXTR does not read disabled optional search rules. It reads enabled
optional search rules as ordinary search rules with no indication that these rules
are optional. SR$READ does read disabled optional search rules. For further
details on optional search rules refer to the SR$ENABL subroutine.

If you call SR$NEXTR when there are no more search rules to read in the search
list, the rule argument returns the value of the last rule in the list (the previous
rule), the code argument returns a value of E$EOL, and the curr rule handle
returns K$END.

The SR$NEXTR curr rule handle is a required input parameter for the
SR$SETL subroutine.

Examples

The following two examples perform identical operations; the first example is
written in PL/I, the second in FORTRAN 77. Each of these examples
sequentially reads the search rules in the MYLIST search list. Each invocation
of SR$NEXTR reads one search rule. Each example supplies a value to the
[referencing_dir] search rule keyword.

/* Sample PL/I program for the SR$NEXTR subroutine */

NEXT_SUB: PROCEDURE;
%INCLUDE 'SYSCOM>KEYS.PL1' ;
DCL SR$NEXTR EXTERNAL ENTRY(CHAR(32) VAR, FIXED BIN(31),

CHAR(128) VAR, PTR, FIXED BIN,
CHAR(128) VAR, FIXED BIN,
RETURNS (FIXED BIN(31));

DCL LIST CHAR(32) VAR STATIC INIT('MYLIST');
DCL PREV FIXED BIN(31);
DCL REFD CHAR(128) VAR STATIC INIT(,MYDIR>TOOLS');
DCL LOC PTR;
DCL 1 LOCATOR DEFINED (LOC),

2 FAULT BIT(l),
2 RING BIT(2),
2 FMT BIT(l) ,
2 SEGNO BIT(12),
2 WORD BIT (16) ,
2 OFFSET BIT(4),
2 RES BIT(12);

DCL RTYPE FIXED BIN;
DCL RULE CHAR(128) VAR;

Second Edition 7-49

SR$NEXTR

Subroutines Reference II: File System

DCL CODE FIXED BIN;
DCL CURR FIXED BIN(31);
DCL X FIXED BIN;
CURR = SR$NEXTR(LIST, K$BGN, REFD, LOC, RTYPE, RULE,

CODE);
IF (CODE = 0)
THEN

BEGIN;
PUT SKIP LIST('The first rule is: ', RULE);
PUT SKIP LIST('Locator seg no: ',LOCATOR.SEGNO);
PUT SKIP LIST('Locator word no: ',LOCATOR.WORD);
END;

ELSE GO TO A;
PUT SKIP;
DO X = 1 TO 10;

CURR = SR$NEXTR(LIST, CURR, REFD, LOC, RTYPE, RULE,
CODE);

IF (CODE = 0)
THEN

BEGIN;
PUT SKIP LIST{'The rule is: ', RULE);
PUT SKIP LIST('Locator seg no: ', LOCATOR.SEGNO) ;
PUT SKIP LIST('Locator word no: ' ,LOCATOR.WORD) ;
END;

ELSE GO TO A;
END;

A: PUT SKIP LIST('Error code: ', CODE);
PUT SKIP;
END NEXT SUB;

C Sample FORTRAN 77 program for the SR$NEXTR subroutine

$INSERT SYSCOM>KEYS.INS.FTN
C Declarations

INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*4 PREV
INTEGER*2 REFSIZE, REFPLUS(128)
CHARACTER*128 REF
INTEGERM PTR
INTEGER*2 TYPE
INTEGER*2 RULESIZE, RULEPLUS(128)
CHARACTER*12 8 RULE
INTEGER*2 CODE
INTEGER*2 RETVAL

C Equivalences
EQUIVALENCE (LSIZE, LPLUS(D)
EQUIVALENCE (LPLUS(2), LIST)
EQUIVALENCE (REFSIZE, REFPLUS(l))
EQUIVALENCE (REFPLUS(2), REF)

7-50 Second Edition

SR$NEXTR

Search Rules

EQUIVALENCE (RULESIZE, RULEPLUS(1))
EQUIVALENCE (RULEPLUS(2), RULE)

C Assignments
LIST(1:6) = 'MYLIST'
LSIZE = 6
REF(1:15) = ''
REFSIZE = 15
RULE = ''

C Subroutine call
RETVAL = SR$NEXTR(LPLUS, K$BGN, REFPLUS, PTR,
* TYPE, RULEPLUS, CODE)
IF (CODE.NE.O) GO TO 10
PRINT *, 'The first rule is:', RULE
CALL EXIT

C Error processing
10 PRINT *, 'Error code ', CODE

CALL EXIT
END

Loading and Linking information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 7-51

SR$READ

Subroutines Reference II: File System

SR$READ
SR$REA

Reads the rules in a specified search list into a structure established by the user.
SR$READ reads all rules, including disabled rules.

Usage

DCL SR$READ EXTERNAL ENTRY (FIXED BIN, CHAR(32) VAR,
PTR, FIXED BIN);

CALL SR$READ (version, listjname, outputjptr, code);

Parameters

version

INPUT. The version number of the requested structure. Different version
numbers are assigned to structures with fields of differing lengths. For Rev.
21.0, set this argument to 1.

list_name
INPUT The name of the search list to be read.

outputjttr
OUTPUT. A pointer to the structure that contains the rules copied from the
search list. If the specified search list contains no rules, this pointer is set to
null. See Structure Description below.

code
OUTPUT. Standard error code. Possible values are

E$OK Operation succeeded.

E$B VER Version number is invalid.

E$LIST Search list specified does not exist.

7-52 Second Edition

SR$READ

Search Rules

Structure Description

The parameter output_ptr points to a structure, rules_strue, as follows:

DCL 1 rules_struc,
2 version FIXED BIN,
2 length FIXED BIN,
2 next PTR OPTIONS(SHORT),
2 rule CHAR (12 8) VAR,
2 e n a b l e d B I T (l) ALIGNED;

version

INPUT. The version number of the structure (for Rev. 21, the version number
is always 1).

length
INPUT. The length of a structure entry (always 140 bytes).

next

OUTPUT. A pointer to the next entry. If the current entry is the last entry in
the structure, next is set to null.

rule
OUTPUT. The search rule itself.

enabled
OUTPUT. An indicator of whether or not the rule is enabled. A value of T b
indicates either an ordinary search rule or an enabled optional search rule. A
value of '0'b indicates a disabled optional search rule.

Discussion

SR$READ copies all of the search rules in a user's search list into a user-
specified structure. The search list itself is unaffected by this copy operation.
SR$READ creates a separate structure entry for each search rule. To check for
the existence of an individual search rule, use SR$EXSTR; to read an individual
search rule, use SR$NEXTR.

SR$READ reads disabled optional search rules. Optional search rules are dis
abled when they are initially set in a search list. Disabled optional search rules
are not shown by the LIST_SEARCH_RULES command or by the SR$NEXTR
read operation. For further details on creating optional search rules, refer to the
Advanced Programmer's Guide II: File System. For further details on enabling
optional search rules, refer to the SR$ENABL subroutine.

It is the user's responsibility to free the space allocated for the structure used by
SR$LIST This space can be freed using the SR$FR_LS subroutine.

Second Edition 7-53

SR$READ

Subroutines Reference II: File System

Examples

The foUowing two examples perform identical operations; the first example is
written in PL/I, the second in FORTRAN 77. Each of these examples sequen
tially reads all of the search rules in search list MYLIST into the structure
READSTRUC. Each READSTRUC entry contains information about one
search rule.

/* Sample PL/I program for the SR$READ subroutine */

READ_SUB: PROCEDURE;
%INCLUDE 'SYSCOM>KEYS.PL1';
DCL RETVAL FIXED BIN(31);
DCL SR$READ EXTERNAL ENTRY(FIXED BIN, CHAR(32) VAR,

PTR, FIXED BIN);
DCL VER FIXED BIN STATIC INIT('l');
DCL LIST CHAR(32) VAR STATIC INIT('MYLIST');
DCL LOC PTR;
DCL CODE FIXED BIN;
DCL 1 READSTRUC BASED(LOC),

2 VERSION FIXED BIN,
2 LENGTH FIXED BIN,
2 NEXT PTR OPTIONS(SHORT) ,
2 RULE_STR CHAR(128) VAR,
2 ENABLED BIT(l) ALIGNED;

CALL SR$READ(VER, LIST, LOC, CODE);
IF (CODE = 0)
THEN BEGIN;

DO WHILE (LOC A= NULL());
PUT SKIP LIST('The rule is: ', RULE_STR) ;
IF (ENABLED = 'l'b) THEN PUT SKIP LIST("Rule is enabled');

ELSE PUT SKIP LIST('Rule is disabled');
LOC = NEXT;
END;
END;

ELSE
PUT SKIP LIST('Error code: ', CODE);

PUT SKIP;
END;

7-54 Second Edition

SR$READ

Search Rules

C Sample FORTRAN 77 program for the SR$READ subroutine

C Declarations
INTEGER*4 PTR, NPTR, PTRl
INTEGER*2 CODE, RULEL
INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST

C Establish space for output structure
INTEGER*2 STRUCT(7 0)
CHARACTER*128 RULE

C Redefine the structure entries
EQUIVALENCE (NPTR, STRUCT(3))
EQUIVALENCE (RULEL, STRUCT(5)), (RULE, STRUCT(6))
EQUIVALENCE (LSIZE, LPLUS(l))
EQUIVALENCE (LPLUS(2), LIST)

C Assignments
LIST (1:6) = --MYLIST'
LSIZE = 6

C Subroutine call
CALL SR$READ(INTS(1) , LPLUS, PTR, CODE)
IF (CODE.NE.0) GO TO 30
PTRl = PTR

C Keep analyzing until the pointer is null
10 IF (AND(PTR,:1777600000).EQ.:1777600000) GO TO 20
C Copy the structure to place where we can access it

CALL MOVEW$(PTR, LOC(STRUCT), INTS (70))
PRINT *, 'The rule is: ', RULE(1:RULEL)
PRINT *
PTR = NPTR
GO TO 10

C Normal exit
20 CALL SR$FR_LS(PTR1, CODE)

IF (CODE.NE.0) GO TO 30
CALL EXIT

C Error processing
30 PRINT *, "Error code ', CODE

CALL EXIT
END

Loading and Linking information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load 1NIPFTNLB.

R-mode: Not available.

Second Edition 7-55

SR$REM

Subroutines Reference II: File System

SR$REM

Removes a search rule from a specified search list.

Usage

DCL SR$REM EXTERNAL ENTRY (CHAR(32) VAR, CHAR(128)
VAR, FIXED BIN);

CALL SR$REM (list_name, rule, code);

Parameters

list_name
INPUT. The name of the search list from which a search rule is to be
removed.

rule
INPUT. The search rule to be removed from the list. The value you specify
for rule must be in the same case (uppercase or lowercase letters) as the
corresponding search rule in the search list.

code
OUTPUT. Standard error code. Possible values are

E$OK Operation succeeded.

E$LIST Search list does not exist.

E$RULE Rule cannot be found in search list specified. Rule may be
nonexistent or in the wrong case.

E$ADMN Rule specified for removal is an administrator rule.

Discussion

SR$REM removes the first instance of a search rule that matches the value of the
SR$REM rule argument. This matching operation is case-sensitive. SR$REM
can delete user-specified and system default search rules and keywords.
SR$REM cannot delete administrator search rules.

You can use SR$REM to remove search rule keywords, for example, [home_dir]
and -added_disks. You remove a keyword variable by specifying the keyword,
not by specifying the current value of that keyword variable.

7-56 Second Edition

SR$REM

Search Rules

Examples

The following two examples perform identical operations; the first example is
written in PL/I, the second in FORTRAN 77. Each of these examples removes
the search rule MYDIR>TESTS from the MYLIST search list.

/ * S a m p l e P L / I p r o g r a m f o r t h e SR$REM s u b r o u t i n e * /

REMOVE_RULE: PROCEDURE OPTIONS(MAIN);
DCL SR$REM EXTERNAL ENTRY (CHAR(32) VAR, CHAR(128) VAR,

FIXED B I N) ;
DCL RULE CHAR(128) VAR STATIC I N I T (' M Y D I R > T E S T S ') ;
DCL LIST CHAR(32) VAR STATIC I N I T (' M Y L I S T ') ;
DCL CODE FIXED BIN;
CALL SR$REM(LIST, RULE, CODE);
I F (CODE = 0)
THEN

PUT SKIP L I S T (' T h e r u l e h a s b e e n r e m o v e d ') ;
ELSE

PUT SKIP L I S T (' E r r o r c o d e : ' , CODE);
PUT S K I P ;
END REMOVE_RULE;

C S a m p l e FORTRAN 77 p r o g r a m f o r t h e SR$REM s u b r o u t i n e

C D e c l a r a t i o n s
INTEGER*2 L S I Z E , LPLUS(32)
CHARACTER*32 LIST
INTEGER*2 RULESIZE, RULEPLUS(128)
CHARACTER*128 RULE
INTEGER*2 CODE

C E q u i v a l e n c e s
EQUIVALENCE (LSIZE , L P L U S (D)
EQUIVALENCE (L P L U S (2) , L I S T)
EQUIVALENCE (RULESIZE, RULEPLUS(1))
EQUIVALENCE (RULEPLUS(2) , RULE)

C A s s i g n m e n t s
L I S T (1 : 6) = 'MYLIST'
LSIZE = 6
RULE(1:12) = 'MYDIR>TESTS'

RULESIZE = 12

C Subroutine call

CALL SR$REM(LPLUS, RULEPLUS, CODE)

IF (CODE.NE.0) GO TO 10

PRINT *, 'Rule removed from list'

CALL EXIT

C Error processing

10 PRINT *, 'Error code ', CODE

CALL EXIT

END

Second Edition 7-57

SR$REM

Subroutines Reference II: File System

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

7-58 Second Edition

SR$SETL
SR$SET

SR$SETL

Search Rules

Modifies the locator pointer of a search rule.

Usage

DCL SR$SETL EXTERNAL ENTRY (FIXED BIN(31), PTR,
FIXED BIN);

CALL SR$SETL (rulejiandle, locator, code);

Parameters

rulejiandle
INPUT. The handle you use to locate the rule to be modified. You obtain the
rulejiandle value from the currjule handle argument returned by the
SR$NEXTR subroutine.

locator
INPUT. The value you wish to establish for the locator pointer. A locator
pointer value should be a valid address in memory. You can set this argument
to null to delete a previous locator pointer value.

code
OUTPUT. Standard error code. Possible values are

E$OK Operation succeeded.

E$BPAR rulejiandle is set to a null address.

E$ADMN Attempted to set the locator pointer of an administrator
rule.

Discussion

SR$SETL is used to set the locator pointer for a rule. Each search rule in the
ENTRY$ search list and in user-defined search lists has a locator pointer. When
the search list is set, these locator pointers are initialized to null values. If the
locator is null, PRIMOS searches for a file system object by searching the file
system. Once the location of the file system object is known, the locator pointer
can be assigned the address in memory of that object. If the locator is not null,
PRIMOS locates the file system object by going to the address in memory

Second Edition 7-59

SR$SETL

Subroutines Reference II: File System

specified by the locator pointer. Assigning a locator pointer value speeds
subsequent use of a search rule.

PRIMOS automatically assigns locator pointer values to the search rules in the
ENTRY$ search list. The first search operation that uses an ENTRY$ search rule
causes PRIMOS to set that search rule's locator pointer. Using SR$SETL, you
can set locator pointers of search rules in user-defined search lists and search
rules in the ENTRY$ search list.

SR$SETL is used in combination with SR$NEXTR. You first read the search
rule using SR$NEXTR. SR$NEXTR returns an address that you supply as the
rulehandle argument input to SR$SETL. After setting the locator pointer, you
can check this value using SR$NEXTR. The SR$NEXTR locator argument
displays the locator pointer value.

Locator pointer values are not used by ATTACH$, BINARY$, COMMANDS, or
INCLUDES search list processing. You cannot use SR$SETL to set a locator
value for an administrator rule.

Example

The following example sets the locator pointer of the first search rule in the
MYLIST search list. It first calls SR$NEXTR to return the address of the search
rule. It then supplies this search rule address and a locator pointer value to
SR$SETL. Finally, it calls SR$NEXTR again to confirm the new locator pointer
value for that search rule.

/* Sample PL/I program for the SR$SETL subroutine */

SET_LOCATOR: PROCEDURE OPTIONS(MAIN);
%INCLUDE 'SYSCOM>KEYS.PL1' ;
DCL SR$NEXTR EXTERNAL ENTRY(CHAR(32) VAR, FIXED BIN(31),

CHAR(128) VAR, PTR,
FIXED BIN, CHAR(128) VAR,
FIXED BIN) RETURNS (FIXED
BIN(31));

DCL LNAME CHAR(32) VAR STATIC INIT('MYLIST');
DCL PREV FIXED BIN(31);
DCL REFD CHAR(128) VAR STATIC INIT(")/
DCL LOC PTR;
DCL 1 LOCATOR DEFINED (LOC),

2 FAULT BIT(l) ,
2 RING BIT(2),
2 FORMAT BIT(l),
2 SEGNO BIT(12),
2 WORDNO BIT(16);

DCL RTYPE FIXED BIN;
DCL RULE CHAR(128) VAR;

7-60 Second Edition

SR$SETL

Search Rules

DCL CODE FIXED BIN;
DCL RETVAL FIXED BIN(31);
DCL SR$SETL EXTERNAL ENTRY (FIXED BIN(31), PTR, FIXED BIN);
DCL LOC2 PTR;
DCL 1 LOCATOR2 DEFINED (LOC2) ,

2 FAULT2 BIT(l),
2 RING2 BIT(2),
2 FORMAT2 BIT(l),
2 SEGN02 BIT(12),
2 WORDN02 BIT(16);

SEGN02 = '100111111111'b;
W0RDN02 = '0101010101010101'b;
/* Perform the calls */
RETVAL = SR$NEXTR(LNAME, K$BGN, REFD, LOC, RTYPE, RULE, CODE);

IF (CODE = 0) THEN
BEGIN;
PUT SKIP LIST('The rule is: ', RULE);
PUT SKIP LISTf'The original segment number is:',LOCATOR.SEGNO);
PUT SKIP LIST('The original word number is : ', LOCATOR.WORDNO) ;
END;

ELSE GO TO A;
CALL SR$SETL(RETVAL, LOC2, CODE);

IF (CODE = 0) THEN
PUT SKIP LIST('Locator pointer set');

ELSE GO TO A;
RETVAL = SR$NEXTR(LNAME, K$BGN, REFD, LOC, RTYPE, RULE, CODE);

IF (CODE = 0) THEN
BEGIN;
PUT SKIP LIST('The rule is: ', RULE);
PUT SKIP LIST('The reset segment number is: ',LOCATOR.SEGNO);
PUT SKIP LIST('The reset word number is: ',LOCATOR.WORDNO);
END;

ELSE GO TO A;
A: PUT SKIP LIST('Error code is: ', CODE);
END SET LOCATOR;

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 7-61

SR$SSR

Subroutines Reference II: File System

SR$SSR

SR$SSR sets a search list using a user-defined search rules file. This subroutine
can create a new search list, overwrite an existing search list, or append rules to
an existing search list.

Usage

DCL SR$SSR EXTERNAL ENTRY (CHAR(128) VAR, CHAR(32) VAR,
BIT(l) ALIGNED, CHAR(128) VAR,
FIXED BIN, FIXED BIN);

CALL SR$SSR (template_path, listjname, overwrite, error_path,
errorJine, code);

Parameters

template_path
INPUT. The pathname of the search rules file that SR$SSR should use to set
the search list.

list_name

INPUT. The name of the search list that PRIMOS should set. A search list
name should be limited to 22 characters. If the search list does not exist,
SR$SSR creates it. If the search list already exists, SR$SSR either overwrites
its contents, or adds rules to the end of the list, depending on how you set the
overwrite argument.

overwrite
INPUT. A flag you set to indicate whether SR$SSR should overwrite existing
rules in the search list. If you set overwrite to 'O'b, SR$SSR appends your
search rules to the list without affecting existing search rules. If you set
overwrite to Tb , SR$SSR overwrites (deletes) existing search rules.

error_path
OUTPUT. The pathname of an unlocatable search rules file, or a search rules
file containing invalid rules. If SR$SSR fails because it cannot locate an input
file, it returns the pathname of that file to error_path. This pathname can be
the search rules file, or a file requested by a -system or-insert keyword.

7-62 Second Edition

SR$SSR

Search Rules

errorjine
OUTPUT. The line number within a search list of an invalid search rule.
SR$SSR returns the line number of the -insert keyword search rule that
requests a circular reference. SR$SSR does not set errorjine for -insert or
-system keywords that refer to nonexistent files. The default value for this
argument is 0.

code
OUTPUT. Standard error code. Possible values are

E$OK Operation succeeded.

E$BPAR Either the search rules file or a file invoked by an -insert or

-system keyword contains invalid rules.

E$NRIT You do not have read access rights to a file.

E$FNTF Either the search rules file does not exist or an -insert or

-system keyword refers to a nonexistent file.

E$LIST Illegal listname.

E$NEST The -insert keyword search rules nest too deeply (over 100
levels) or request a circular reference.

Discussion

SR$SSR sets a search list by copying the rules in the search rule file specified in
the template_path argument. It prefaces the search list with administrator rules if
such rules exist for that list.

If the specified list already exists, you can direct SR$SSR to either overwrite the
existing list or append rules to the existing list. An overwrite operation deletes all
rules from the existing list, copies in the administrator rules for that list, then
copies the rules in the template_path file into the search list. An append opera
tion copies the rules in the template_path file to the end of the existing search
list. In either event, if SR$SSR encounters an error, it sets the code argument
and leaves the existing list unchanged.

If the search rules file you are using as a template contains an -insert keyword,
SR$SSR includes the additional rules indicatedby that keyword. SR$SSR can
process multiple nested inserts.

If the search rules file you are using as a template contains a -system keyword,
SR$SSR inserts the system default rules at the location in your list of the
-system keyword.

When performing an overwrite of an existing list, SR$SSR copies each rule's
locator pointer value from the old list to the identical rule (if it exists) in the new
list. This matching of search rules is case-sensitive. Refer to SRSSETL for
details on locator pointers.

Second Edition 7-63

SR$SSR

Subroutines Reference II: File System

Examples

The following two examples perform identical operations; the first example is
written in PL/I, the second in FORTRAN 77. Each of these examples sets the
MYLIST search list using the MYDIR>RULES.MYLIST.SR search rules file.
The overwrite argument instructs PRIMOS to delete all prior user-specified
rules set for MYLIST.

/ * S a m p l e P L / I p r o g r a m f o r t h e SR$SSR s u b r o u t i n e * /

SET_SEARCH_RULES: PROCEDURE OPTIONS(MAIN);
DCL SR$SSR EXTERNAL ENTRY (CHAR(128) VAR, CHAR(32) VAR,

B I T (l) ALIGNED, CHAR(128) VAR, FIXED BIN, FIXED B I N) ;
DCL FILE CHAR(128) VAR STATIC INIT(*MYDIR>RULES.MYLIST.SR') ;
DCL LIST CHAR(32) VAR STATIC I N I T (' M Y L I S T ') ;
DCL OVERWRITE B I T (l) ALIGNED STATIC I N I T (' l ' b) ;
DCL EPATH CHAR(128) VARYING;
DCL ELINE FIXED BIN;
DCL CODE FIXED BIN;
CALL S R $ S S R (F I L E , L I S T , OVERWRITE, EPATH, ELINE, CODE);
I F (CODE = 0)
THEN

PUT SKIP L I S T (' T h e s e a r c h l i s t h a s b e e n s e t ') ;
ELSE

BEGIN;
PUT SKIP L I S T (' E r r o r c o d e : ' , CODE);
PUT SKIP L I S T (' E r r o r p a t h : ' , EPATH);
PUT SKIP L I S T (' E r r o r l i n e : ' , E L I N E) ;
END;

PUT S K I P ;
END SET SEARCH RULES;

7-64 Second Edition

SR$SSR

Search Rules

C Sample FORTRAN 77 program for the SR$SSR subroutine

C Declarations
INTEGER*2 FILESIZE, FILEPLUS(128)
CHARACTER*128 FILE
INTEGER*2 LSIZE, LPLUS(32)
CHARACTER*32 LIST
INTEGER*2 OVERWRITE
INTEGER*2 EPSIZE, EPPLUSU28)
CHARACTER*128 EPATH
INTEGER*2 ELINE
INTEGER*2 CODE

C Equivalences
EQUIVALENCE (FILESIZE, FILEPLUS(1))
EQUIVALENCE (FILEPLUS(2), FILE)
EQUIVALENCE (LSIZE, LPLUS(1))
EQUIVALENCE (LPLUS(2), LIST)
EQUIVALENCE (EPSIZE, EPPLUS(l))
EQUIVALENCE (EPPLUS(2), EPATH)

C Assignments
FILE(1:21) = ,MYDIR>RULES.MYLIST>SR'
FILESIZE = 21
LIST(1:6) = 'MYLIST'
LSIZE = 6
OVERWRITE = : 100000

C Subroutine call
CALL SR$SSR(FILEPLUS, LPLUS, OVERWRITE, EPATH, ELINE, CODE)
IF (CODE.NE.0) GO TO 10
PRINT *, 'The search list has been set'
CALL EXIT

C Error processing
10 PRINT *, "Error code: ', CODE

PRINT *, 'Error path:', CODE
PRINT *, 'Error line: ', CODE
CALL EXIT
END

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 7-65

Obsolete File System
Subroutines

A

This appendix contains descriptions of several file system subroutines that are
considered obsolete and have been replaced by newer ones. The new subroutines
either perform the functions of the older ones more efficiently, or have enhanced
functionality, or both. In many cases the calls to the new subroutines are simpler
than those of the older ones.

For programs written for use with Rev. 20.2 and later revisions, Prime
encourages the use of the new subroutines in place of those described in this
appendix. The older ones are presented here only for reference in maintaining
programs that currendy call them. When replacing these programs, you should
consider using the newer calls, described elsewhere in this volume.

Second Edition A-1

ATCH$$

Subroutines Reference II: File System

ATCH$$

Note In new programming, use of the AT$ subroutines in place of the ATCH$$ subroutine is
recommended. The AT$ subroutines are described in Chapter 3.

ATCH$$ attaches to a directory and, optionally, makes it the home directory. In
attaching to a directory, the subroutine ATCH$$ specifies where to look for the
directory. ATCH$$ specifies that a User File Directory (UFD) is in the Master
File Directory (MFD) on a particular logical disk, in a subdirectory in the current
directory, or in the home directory.

Usage

CALL ATCH$$ (dirnam, namlen, Idisk, passwd, key, code);

Parameters

dirnam
The name of the directory to be attached (integer array). If key is K$IMFD
and dirnam is the key K$HOME, the home directory is attached. If the
reference subkey is K$ICUR, dirnam is the name of an array that specifies the
name of the directory to attach to.

namlen
The length in characters (1-32) of dirnam (INTEGER*2). namlen may be
greater than the length of dirnam provided that dirnam is padded with the
appropriate number of blanks. If dirnam = K$HOME, namlen is disregarded.

Idisk
The number of the logical disk to be searched for dirnam when key =
K$IMFD (INTEGER*2). The parameter Idisk must be a logical disk that is
started up. Other values for Idisk are

K$ALLD Search all started-up local logical devices in logical device
order (then likewise all such remote devices), and attach to
the directory in which dirnam appears in the MFD of the
lowest numbered logical device.

K$CURR Search the MFD of the disk currently attached.

A-2 Second Edition

ATCH$$

Obsolete File System Subroutines

passwd
A three-halfword integer array containing one of the passwords of dirnam.
passwd can be specified as 0 if attaching to the home directory. If the
reference subkey is K$IMFD or K$ICUR, passwd must be the name of a
three-halfword array that specifies one of the passwords of dirnam. If passwd
is blank, it must be specified as three halfwords, each containing two blank
characters.

key
Composed of two subkeys whose values are added together, a REFERENCE
subkey and a SETHOME subkey (INTEGER*2). The REFERENCE subkey
values are as follows:

K$IMFD Attach to dirnam in MFD on Idisk.

K$ICUR Attach to dirnam in current directory (dirnam is a
subdirectory).

The SETHOME subkey, K$SETH, may be added to the REFERENCE subkey
as K$IMFD+K$SETH, which will set the current directory to the home
directory after attaching. If the REFERENCE subkey is K$ICUR, or if dirnam
is 0, Idisk is ignored, and it is usually specified as 0.

code
An INTEGER*2 variable set to the return code.

Discussion

To access files, the file system must be attached to some user directory (formerly
referred to as the User File Directory or UFD). This implies that the file system
has been supplied with the proper file directory name and either the owner or
nonowner password, and the file system has found and saved the name and
location of the file directory. After a successful attach, the name, location, and
owner/nonowner status of the directory is referred to as the current directory.
As an option, this information may be copied to another place in the system,
referred to as the home directory. The ATCH$$ subroutine does not change the
home directory unless the user specifies a change in the subroutine call. The
user gets owner status or nonowner status according to the password used. The
owner of a file directory can declare, on a per-file basis, what access a nonowner
has over the owner's files. The nonowner password may be given only under
PRIMOS and PRIMOS II.

A BAD PASSWD error condition does not return to the user's program. PRIMOS
command level is entered. Other errors leave the attach point unchanged.

Second Edition A-3

ATCH$$

Subroutines Reference II: File System

Examples

• Attach to home directory:

CALL ATCH$$ {K$HOME, 0, 0, 0, 0, CODE)

• Attach to directory named 'G.S.PATTON', password 'CHARGE' in
current directory:

CALL ATCH$$('G.S.PATTON' , 10, K$CURR, *CHARGE', K$ICUR,
CODE)

A-A Second Edition

CREA$$

Obsolete File System Subroutines

CREA$$

Note In new programming, use of the DIR$CR subroutine in place of the CREA$S subroutine
is recommended. This subroutine is described in Chapter 4.

CREA$$ creates a new subdirectory in the current directory and initializes the
new entry. The new subdirectory is of the same type (ACL or non-ACL) as the
current directory.

Usage

DCL CREA$$ ENTRY (CHAR NONVARYING(32), FIXED BIN,
CHAR NONVARYING(6),
CHAR NONVARYING(6), FIXED BIN);

CALL CREA$$ (filnam, namlen, owner_pw, nonowner_j?w, code);

Parameters

filnam
The name to be given the new directory (input).

namlen
The length in characters (1-32) of filnam (16-bit integer).

owner_pw
A six-character array containing the owner password for the new directory. If
opwner_pw(l) = 0, the owner password is set to blanks, owner_pw is ignored
if an ACL directory is being created.

nonownerjpw
A six-character array containing the nonowner password for the new
directory. If nonowner_pw{\) is 0, the nonowner password is set to zeros. Any
password given to ATCH$$ matches a nonowner password of zeros.
nonowner_pw is ignored if an ACL directory is being created.

code
A 16-bit integer variable to be set to the return code from CREA$$. Possible
values are

E$BNAM The supplied name is illegal.

E$BPAR The name length is illegal.

Second Edition A-5

CREA$$

Subroutines Reference II: File System

E$EXST An object with the given name already exists.

E$NRIT Add rights were not available on the current directory.

E$WTPR The disk is write-protected.

E$NINF An error occurred, and list rights were not available on the
current directory.

E$NATT The current attach point is invalid.

Discussion

CREA$$ creates a new subdirectory in the current directory. The new
subdirectory is of the same type as its parent. Thus, if CREA$$ is used in an
ACL directory, it will create an ACL directory. If used in a password directory it
will create a password directory.

Password directories may be explicitly created with the CREPW$ routine. There
is no special routine to create ACL directories, since CREA$$ will always create
an ACL directory within an ACL directory, and an ACL directory may not have
a password directory as its parent.

Passwords can be set such that the password cannot be entered from the
keyboard and the directory is accessible only from a program. In any case,
passwords can be at most six characters long. Passwords shorter than six
characters must be padded witfi blanks for the remaining characters. Passwords
are not restricted by filename conventions and may contain any characters or bit
patterns.

It is strongly recommended that passwords do not contain blanks, commas, or
the characters = ! ' @ { } [] () ; A < > o r lowercase characters. Passwords
should not start with a digit. If passwords contain any of the above characters or
begin with a digit, the passwords may not be given on a PRIMOS command line
to the ATTACH command.

Since the subroutine SRCH$$ does not allow creation of a new directory,
CREA$$ must be used for this purpose. Under program control, CREA$$ allows
the action of the PRIMOS CREATE command.

CREA$$ requires Add access on the current directory.

Example

To create a new directory with default passwords of blanks for owner and 0 for
nonowner:

CALL CREA$$ ('NEWUFD', 6 , 0 , 0 , CODE)

A-6 Second Edition

CREPW$

Obsolete File System Subroutines

CREPW$

Note In new programming, use of the DER$CR subroutine in place of the CREPW$ subroutine
is recommended. This subroutine is described in Chapter 4.

CREPW$ creates a new password directory. Add access is required on the
current directory.

Usage

DCL CREPW$ ENTRY (CHAR(32), FIXED BIN, CHAR(6), CHAR(6),
FIXED BIN);

CALL CREPW$ (name, namejength, owner_pw, nonowner_pw, code);

Parameters

name
Name of the directory to be created (input).

namejength
Length of the name in characters (input).

owner_pw
Password which must be used to attach with owner rights (input).

nonownerjpw
Password that must be used to attach with nonowner rights (input).

code
Standard error code (output). Possible values are

E$BNAM The supplied name is illegal.

E$BPAR The name length is illegal.

E$EXST An object with the given name already exists.

E$NRIT Add rights were not available on the current directory.

E$WTPR The disk is write-protected.

E$NINF An error occurred, and list rights were not available on the
current directory.

E$NATT The current attach point is invalid.

Second Edition A-7

RDEN$$

Subroutines Reference II: File System

RDEN$$

Note In new programming, use of the DIR$RD or ENT$RD subroutine in place of the
RDEN$$ subroutine is preferred. These subroutines are described in Chapter 4.

RDEN$$ positions in or reads from a directory.

Usage

CALL RDEN$$ (key, funit, buffer, buflen, rnhw,filnam, namlen, code);

Parameters

key
A 16-bit integer variable specifying the action to be taken. Possible values
are

K$READ Advance to the start of the first or next directory entry and
read as much of the entry as will fit into buffer. Set rnhw to
the number of halfwords read.

K$NAME Position to the start of the entry specified by filnam and
namlen. Read as much of the entry as will fit into buffer.
Set rnhw to the number of halfwords read. If the entry is
not in the directory, the code E$FNTF is returned. If
namlen is 0, the next entry is returned.

K$GPOS Return the current position in the directory as a 32-bit
integer in filnam.

K$UPOS Set the current position in the directory from the 32-bit
integer in filnam. This key should be used only with a
position of 0.

K$POSN Return access category entries.

funit
A unit on which a directory is currently opened for reading (INTEGER*2). (A
directory may be opened with a call to SRCH$$.)

buffer
A one-dimensional array into which entries of the directory are read.

A-6 Second Edition

RDEN$$

Obsolete File System Subroutines

buflen
The length, in halfwords, of buffer (INTEGER*2) set to a value of 24.

rnhw
An INTEGER*2 variable that will be set to the number of halfwords read.

filnam
An INTEGER*4 variable used for keys of K$GPOS and K$UPOS, or a name
(character string) for use with K$NAME.

namlen
An INTEGER*2 variable specifying the length in characters (0-32) of filnam.
This variable is only used with K$NAME.

code
An INTEGER*2 variable to be set to the return code. Possible values are

E$FNTF The entry is not in the directory.

E$EOF No more entries.

E$BFTS Buffer is too small for the entry.

Discussion

RDEN$$ is used to read entries from a directory, rnhw halfwords are returned in
buffer, and the file unit position is advanced to the start of the next entry.

Caution Directory positioning is obsolete and should not be necessary.

In the file management system, directories are not compressed when files are
deleted, and vacant entries may be reused. Thus, a newly created file is not
necessarily found at the end of a directory.
The complete format of currently defined entries is given in Figure A-l and
discussed below for revisions before Rev. 19. (For Rev. 19 format, see DIR$RD.)
All numbers are decimal unless preceded by a colon (:).

Second Edition A-9

RDEN$$

Subroutines Reference II: File System

0

1

17

18

19

20

21

22

23

ECW

F
I

N L

A E
M

E

PROTEC

NDACL?

FILTYP

DATMOD

TIMMOD

RESERVED

RESERVED

Entry Control Word (type/length)

Filename (blank-padded)

Protection (owner/nonowner)

Non-default ACL

File type •* (end of entry for type = 1)

Date last modified

Time last modified

Reserved for future use

Reserved for future use I0AJ01 DIOO&l 21A

Figure A-1. File Entry Format

ECW
Entry Control Word. An ECW is the first halfword in any entry and consists
of two 8-bit subfields. The high-order eight bits indicate the type of the entry,
the low-order eight bits give the length of the entry in halfwords including the
ECW itself. Possible values of the ECW are as follows:

:003030 Type=3, length=24. A type of 3 indicates an access
category directory entry. All the above information is
returned.

:001030 Type=2, length=24. Type=2 indicates a new partition UFD
entry. All the above information is returned. Reserved
fields should be ignored.

User programs should ignore any entry types that are not recognized. This
allows future expansion of the file system without unduly affecting old
programs.

filename
Up to 32 characters of filename, blank-padded.

A-10 Second Edition

RDEN$$

Obsolete File System Subroutines

protec
Owner and nonowner protection attributes. The owner rights are in the
high-order eight bits, the nonowner in the low-order eight bits. The meanings
of the bit positions are as follows (a set bit grants the indicated access right):

1-5, 9-13 Reserved for future use

6, 14 Delete/truncate rights

7, 15 Write access rights

8,16 Read access rights

nonjAefault_ acl
The high-order bit is 1 if this UFD entry is protected by a specific ACL or
access category, 0 if it is protected by the default ACL. Bits 2-16 are
reserved.

filtyp
On a new partition, the low-order eight bits indicate the type of the file as
follows:

0

1

2

3

4

6

SAM file

DAM file

SAM segment directory

DAM segment directory

UFD

Access category

On an old partition, the file type is invalid. The file must be opened with
SRCH$$ to determine its type.

Of the high-order eight bits, six are currently defined as follows:

bit 1 Set only for the BOOT and DSKRAT files, if they are on a
storage module disk.

bit 2 The dumped bit. This bit can be set by a call to SATR$$ and
is reset whenever the file is modified. This bit is used by the
utility program that dumps only modified files to magnetic
tape. Users are normally not interested in this bit.

bit 3 This bit is set by PRIMOS II when it modifies the file and
reset by PRIMOS (and PRIMOS II) when it modifies the file.
If this bit is set, the time-date field for the file will not be
current because PRIMOS II doesn't update the dateAime
stamp when it modifies a file.

Second Edition A-11

RDEN$$

Subroutines Reference II: File System

bit 4 This bit is set to indicate that this is a special file. The only
special files are BOOT, MFD, BADSPT, and the DSKRAT
file which has the name packname. This bit, and this bit only
is valid on both new and old-style partitions.

bits 5-6 Setting of the read/write lock. (See below.)

datmod The date on which the file was last modified.
The date, which is valid only on new
partitions, is held in the binary form
YYYYYYYMMMMDDDDD, where
YYYYYYY is the year modulo 100,
MMMM is the month, and DDDDD is the
day.

timmod The time at which the file was last modified.
The time, which is valid only in new
partitions, is held in binary
seconds-since-midnight divided by four.

The Read/Write Lock

The PRIMOS file system supports individual values of the read/write lock
(RWLOCK) on a per-file basis, for those files residing on new partitions. The
read/write lock is used to regulate concurrent access to the file, and was formerly
alterable only on a system wide basis.

The meaning of the lock values is

Value Bits 5,6 Meaning

0 0,0

1

2

3

0,1

1,0

1,1

Use system wide RWLOCK to regulate concurrent
access.

Allow arbitrary readers or one writer.

Allow arbitrary readers and one writer.

Allow arbitrary readers and arbitrary writers.

New files are initially created with a per-file read/write lock of 0.

UFDs do not have user-alterable read/write locks, though segment directories
do. Files in directory have the per-file read/write lock of the segment directory.

A-12 Second Edition

RDEN$$

Obsolete File System Subroutines

The per-file read/write lock value is read by RDEN$$. It is set by a SATR$$
call with a key of K$RWLK. The desired value is supplied in bits 15 and 16 of
ARRAY(l), the remaining bits of which must be 0. On old partitions, the
SATR$$ call fails with an error code of E$OLDP. Owner rights to the containing
UFD are required, otherwise the call fails with an error code of E$NRIT. An
attempt to set the lock value of a UFD fails with an error code of E$DIRE.

If the SATR$$ call requests a lock value which is more restrictive than the
current usage of the file, the file's lock value is changed and current users of the
file are unaffected, but any new openings subsequently requested are governed
by the new lock value. It is unspecified what happens when bits 1-13 of
ARRAY(l)arenotO.

The commands MAGSAV and MAGRST properly save and restore the per-file
read/write lock along with the file itself. Existing backup tapes without saved
read/write locks on them are restored with read/write locks of 0, so the
system-wide RWLOCK setting continues to control access to such files.

The COPY command with the -RWLOCK option copies the per-file read/write
lock setting along with the file.

Examples

• Read next entry from new or old UFD:

100 CALL RDEN$$ (K$READ, funit, ENTRY, 24, RNW, 0, 0,
CODE)

IF (CODE .NE. 0) GOTO <error handler>
TYPE=RS(ENTRY(1) ,8) /* GET TYPE OF ENTRY JUST READ

• Position to beginning of UFD:

CALL RDEN$$ (K$UPOS, f u n i t , 0, 0, 0, 000000, 0, code)

Second Edition A-13

RDEN$$

Subroutines Reference II: File System

• This program reads directory entries sequentially using RDEN$$:

/***/

rd$dir:
proc(dunit, rdenjptr, code);

del dunit bin, /* unit directory is open on */
rdenjptr pointer, /* pointer to rden_buffer */
code bin; /* standard error code */

%include 'syscom>keys.pll';
%include '*>insert>parameters.ins. spl' ;

del rden$$ entry(bin,bin,(24)bin,bin,bin,char(*),
bin, bin),

rden_buffer(24) bin based(rden_ptr),
rden_name_ext char(32) defined rden_buffer(2),
rden_name_local char(32);

del i bin;
del trim builtin;

/*** ***************/

call rden$$(k$read, dunit, rden_buffer, 24, i, '', 0, code);

rden_buffer(19) = rden_buffer(18); /* Copy protection keys */
rden_name_local = rden_name_ext; /* Copy name for trim (since

the strings overlap). */
rden_jptr -> rden_buffer_.filename = trim(rden_name_local, ' 01'b) ;
return;

end rd$dir; /* rd$dir */
/***/

A-14 Second Edition

RDEN$$

Obsolete File System Subroutines

• The next example reads directory entries by name using RDEN$$:

rd$ent:
proc(treename, rden_ptr, code);

del treename char(128) var, /* file info is wanted for */
rden_jptr pointer, /* pointer to rden_buffer */
code bin; /* standard error code */

%include 'syscom>keys.pll';
%include '*>insert>parameters.ins.spl';

del rden$$ entry(bin, bin, (24) bin, bin, bin,char(*),
bin, bin),

rden_buffer(24) bin based(rden_ptr),
rden_name_ext char(32) defined rden_buffer (2),
rden_name_local char(32);

del srch$$ entry(bin, bin, bin, bin, bin, bin);
del tatch$ entry(char(*) var, bin);
del path$ entry(char(*) var) returns(char(128) var);
del entry$ entry(char(*) var) returns(char(32) var);
del home$ entry();
del close$ entry(bin);
del (i,

icode,
unit) bin;

del tree bit(l) aligned,
filename char(32) var;

del (length,
trim,
addr,
index) builtin;

tree = (index(treename, '>') A= 0) ;
if tree

then do;
call tatch$(path$(treename), code);
if code /v= 0

then go to clean_up;
end;

call srch$$(k$read + k$getu, k$curr, 0, unit, i, code);
if code ~= 0

then go to clean_up;

Second Edition A-15

RDEN$$

Subroutines Reference II: File System

filename = entry$(treename);
call rden$$(k$name, unit, rden_buffer, 24, i, (filename),

length(filename), code);
call close$(unit);

rden_buffer(19) = rden_buffer(18)/ /* Copy protection keys */
rden_name_local = rden_name_ext; /* Copy name for trim (since

the strings overlap). */
rdenjptr -> rden_buffer_. filename = trim(rden_name_local, 'Ol'b);

clean_up:
if tree

then call home$;
return;

end rd$ent;

A-16 Second Edition

TSRC$$

Obsolete File System Subroutines

TSRC$$

Note In new programming, use of the SRSFX$ subroutine in place of the TSRC$$ subroutine
is recommended. This subroutine is described in Chapter 4.

TSRC$$ is a subroutine to open a file anywhere in the PRIMOS file structure.

Usage

CALL TSRC$$ (action+newfil, pathname, funit, chrpos, type, code);

Parameters

action
A 16-bit key indicating the action to be performed. Possible values are

K$RE AD Open pathname for reading on funit.

K$WRIT Open pathname for writing on funit.

K$RDWR Open pathname for reading and writing on funit.

K$DELE Delete file pathname.

K$EXST Check on existence of pathname.

K$CLOS Close pathname (not funit).

K$GETU Open pathname on an unused file unit selected by
PRIMOS. The unit number is returned in funit.

K$VMR Open pathname for VMFA read.

newfil
A 16-bit key indicating the type of file to create if pathname does not exist.
Possible values are

K$NSAM New threaded (SAM) file. (This is default.)

K$NDAM New directed (DAM) file.

K$NSGS New threaded (SAM) segment directory.

K$NSGD New directed (DAM) segment directory.

Second Edition A-17

TSRC$$

Subroutines Reference II: File System

pathname
An array specifying a file in any directory or subdirectory, packed two
characters per halfword.

funit
The number (1-126) of the file unit to be opened or deleted (16-bit integer).
funit is closed before any action is attempted.

chrpos
A two-element integer array for character position set up as follows:

chrpos{\) On entry, set to contain the position in the array pathname
occupied by the first character of the filename. (The count
starts at 0.) On exit, it will be pointing one past the last
character that was part of the pathname. A comma, new
line, or carriage return will terminate the name, as will end
of array. In case of error, chrpos(Y) points one past the
pathname component that caused the error. chrpos(Y) is
always modified by this subroutine, so it must be set up
before each call.

chrpos(2) The number of characters in the pathname array (16-bit
integer).

type
An integer variable set to the type of the file opened, type is set only on calls
that open a file; it is unmodified for other calls. Possible values are

0

1

2

3

4

SAM file

DAM file

SAM segment directory

DAM segment directory

UFD

code
A 16-bit integer variable set to the return code. If no errors, code is 0.

A-18 Second Edition

B
Data Type Equivalents

To call a subroutine from a program written in any Prime language, you must
declare the subroutine and its parameters in the calling program. Therefore, you
must translate the PL/I data types expected by the subroutine into the equivalent
data types in the language of the calling program.

Table B-l shows the equivalent data types for the Prime languages B ASIC/VM,
C, COBOL 74, FORTRAN IV, FORTRAN 77, Pascal, and PL/I. The leftmost
column lists the generic storage unit, which is measured in bits, bytes, or
halfwords for each data type. Each storage unit matches the data types listed to
the right on the same row. The table does not include an equivalent data type for
each generic unit in all languages. However, with knowledge of the
corresponding machine representation, you can often determine a suitable
workaround. For instance, to see if you can use a left-aligned bit in COBOL 74,
you could write a program to test the sign of the 16-bit field declared as COMP.
In addition, if a subroutine parameter consists of a structure with elements
declared as BIT(n), it can be declared as an integer in the calling program. Read
the appropriate language chapter in the Subroutines Reference I: Using
Subroutines before using any of the equivalents shown in the table.

Note The term PL/I refers both to full PL/I and to PL/I Subset G (PL/I-G).

Second Edition B-1

Subroutines Reference II: File System

V)

Oo

S>
O)
C

- J

.5

§
•S
TO
Q
c
Oj

.§
3

CO

CD

s

Ll
Q .

8
«

Q .

Z
<

2

z
<

p >
2

o

o

o

1 =
O

FI
X

E
D

 B
IN

FI

X
E

D

B
IN

(1
5)

T3
CD

gf
^ UJ

f J CM

DC _ i
LU <

o o

S3

CM

DC CC _ i
UJ UJ <

o o O
L U U J 5

£ w o
o o 0-
o a.

£ 1
0) CD

Z

CD
o>
CD

3
CD

CO
Q z
LU —
X CQ
LU

QC
LU
(D
LU
h-
z
o
z

3
CC CC _ l l l
LU UJ < <
o o o o
u j u j o e 5

1^23

DC
UJ
(D
LU
1 -

z

1 §

& C/3 O

o o °-
O Q.

z

CD
O l
03

. C

s
C M
CO

i CO

?§-
| c o o
o o 0-
O 0.

(5
o>
•2

4

FL
O

AT
 B

IN

FL
O

AT

B
IN

(2
3)

_ i
<
UJ

•c

«
_ l _ l
< <
LU LU
DC DC

_i Li
< <
LU LU
DC CC

•L

O
O

CO

o

_ J

<
LU
DC

c
o

Ml
CO a)

£ s.
. t ; CD

- 9 D>
CM . E
CO V)

2 CO
LL

_ l
<
LU
DC
CD
Z
o
_ l

CO

<
UJ
DC

oo
Li
<
UJ

•c

CM

0 _

2
O
o

CD

O

CO

Ll
<
UJ
DC

c
o
•«

_ 'o
re £
O Q .

t l CD

"* o
CD T3

CD
T —

Li
<
UJ
DC

c
o

O O
JZ CD
. t : Q .

oo co
CM 3
*~ or

1 - h-
CQ CD

o
sz
V)

3

Q
UJ
Z

1 - <
00

z
<
LU
_ 1
O
o
03

o
CO

3
T>
Q)
c
o>

"cp
*:

5-2 Second Edition

^ >
> * >

in
CD
d
O

s
o'
3

CD

do

Table B-1. Equivalent Data Types for Prime Languages

Generic
Unit

Bit string

Fixed-length
character string

Fixed-length
digit string

Fixed-length
digit string,
2 digits per byte

Varying-length
character string

32-bit pointer

48-bit pointer

BASIC/VM
SUB FORTRAN

INT

C

unsigned
int

char NAME[n]
char NAME

struct
{short LENGTH;
char DATA[n];

}CVAR

Pointer
(32IX-mode)

Pointer
(64V-mode)

(Continued)

COBOL
74

DISPLAY
PIC A(n)
PIC X(n)
FILLER

DISPLAY
PIC 9(n)

COMP-3

FORTRAN
IV

LOC()

FORTRAN
77

CHARACTER
*n

LOC()

Pascal

SET

CHAR
PACKED

ARRAY[1 ..n]
OF CHAR

STRING[n]

Pointer

PL/I

BIT(n)

CHAR(n)

PICTURE

FIXED
DECIMAL

CHAR(n)
VARYING

POINTER
OPTIONS
(SHORT)

POINTER

T0FOU)l00812Ui

Notes

For a discussion of possible workarounds for some of the empty boxes in this table as well as a description of
generic units for PMA, refer to the appropriate language chapter in the Subroutines Reference I: Using Subroutines.

The BASIC/VM column lists FTN data types to be declared in the SUB FORTRAN statement in a BASIC/VM
program.

CD

C

CD

CO

Argument Parsing by the CL$PIX
Subroutine

c

Overview

The CL$PIX subroutine allows a program to process arguments on a command
line, using the rules explained for arguments in the CPL User's Guide.

Using a description of the expected arguments in the form of a list of keywords,
CL$PIX builds a structure consisting of a number of elements, or pixels,
containing the arguments in a readily accessible form for the routine that is to
use the arguments.

CL$PIX Operating Modes

CL$PIX operates in either of two modes: a normal mode for routines that call
for and use arguments entirely within themselves, and CPL mode for routines
that are called by CPL programs and pass the parsed arguments back to the
calling program. The two modes differ principally in the way in which they point
to the parsed argument structure. They are described in detail on the following
pages.

The Picture in Normal Mode

This mode is used by most callers of CL$PIX. It is intended to be used by a
command to process its command-level arguments into a form that it can use for
decision making or further processing. It is a CHAR(*)VAR string, and must be
scalar (singly-dimensioned).

Second Edition C-1

Subroutines Reference II: File System

Basic Format: The syntax of the normal mode picture is very similar to that
of the CPL &ARGS directive, the major difference being that no variable names
are allowed (because the results are not being stored in local command
variables).

The picture looks like

argument group [; argument group]; .../ end

Each argument group defines either an object argument, or an option argument
and its associated objects if any. The end token is required to delimit the end of
the picture string, and must be last in the string.

First, a word about lexical format. Uppercase and lowercase are equivalent
anywhere except inside quotes. Extra blanks may appear anywhere that a single
blank is allowed or required. Blanks are not required to precede or follow other
delimiters, such as ";", but they may be present if desired. Single character
string tokens that contain blanks or delimiters must be enclosed in quotes, but the
quotes are not part of the token itself. The delimiter characters are

b l a n k , ; = <) * %

Other punctuation or special characters should also be quoted.

If the picture is supplied in the form of an array of varying strings, an implicit
lexical blank separates elements of the array. That is, when the end of any
element is reached, a blank is recognized, regardless of the length of that
particular element.

Object Argument Groups: As in the CPL &ARGS directive, all argument
groups that define object arguments must appear before the first argument group
that defines an option argument.

The simplest argument group simply declares the data type of the object
argument. CL$PIX supports the following data types:

char Arbitrary character string up to 80 bytes long, mapped to

uppercase.

chad Arbitrary character string up to 80 bytes long, not mapped.

tree PRIMOS pathname up to 128 bytes long, mapped to
uppercase. Wildcard characters are allowed.

entry Filename, up to 32 bytes long, mapped to uppercase.
Wildcard characters are allowed.

id PRIMOS user or project identifier, up to 32 bytes long,
mapped to uppercase. Must begin with a letter, and contain
only letters, digits, or the special characters $,., or _.

C-2 Second Edition

Argument Parsing by the CL$PIX Subroutine

password PRIMOS user login password, up to 16 bytes long, mapped to
uppercase. May contain any characters except PRIMOS
reserved characters.

dec Decimal integer with optional sign, in the range (2**31 - 1)
to (-2**31 + 1).

oct Octal integer with optional sign, in the range (2**31 - 1)
through (-2**31 + 1).

hex Hexadecimal integer, unsigned, in the range 0 through
(2**32-1).

date A calendar date and time in one of the standard formats:

ISO (YY-MM-DD.HH:MM:SS.dow)

USA (MM/DD/YY.HH:MM:SS.dow)

Visual (DD Mmm YY HH:MM:SS day-of-week)

ptr

REST

UNCL

The day of week field is always ignored (but checked for
legality); time fields default to 0; omitted YY defaults to
current year, if entire date and "." are omitted, defaults to
current date. The converted representation is the PRIMOS file
system format.

PRIMOS virtual address in the form S/W, where S is the octal
segment number and W is the octal word number.

Rest of command line, up to 160 bytes long. (See below for
explanation.) Uppercase and lowercase are distinguished. See
the discussion of data type REST below.

String of unclaimed tokens; that is, all tokens on the
command line not accounted for elsewhere in the picture.
May be as long as 160 bytes. Uppercase and lowercase are
distinguished. See the discussion of data type UNCL below.

A simple picture might then be

char ; end

which defines a command line consisting of a single character string argument
that will be mapped to uppercase. A more complex picture might be the
following:

tree; dec; charl; end

This specifies three arguments: a treename, followed by a decimal integer,
followed by a character string (unmapped).

Second Edition C-3

Subroutines Reference II: File System

Assignment to the Output Structure: When the command line is parsed
against the picture, the structure pointed to by struc-ptr is filled in. The shape of
the structure is determined by the picture: each object argument, option
argument, or option argument parameter generates a member of the structure.
The data type of each member is determined by the corresponding data type in
the picture. The correspondence is

Data Type

char

charl

tree

entry

id

password

dec

oct

hex

date

PU

REST

UNCL

PL/IType

char(80) var

char(80) var

char(128) var

char(32) var

char(32) var

char(16) var

fixed bin(31)

fixed bin(31)

fixed bin(31)

fixed bin(31)

ptr options(short)

char(160) var

char(160) var

FORTRAN Type

INTEGER(41)

INTEGER(41)

INTEGER(65)

INTEGER(17)

INTEGER(17)

INTEGER(9)

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER(81)

INTEGER(81)

The following examples show the declaration statements for specific data types
in a picture.

Picture

char; end

tree; dec; charl; end

Structure

del 1 struc,
2 char_arg char(80) var,

del 1 struc,
2 tree_arg char(128) var,
2 dec_arg fixed bin(31),
2 charl_arg char(80) var,

C-4 Second Edition

Argument Parsing by the CL$PIX Subroutine

Use of Data Types REST and UNCL: These two data types cause special
processing to occur.

The UNCL data type can be used only with an object argument, not an option
argument. Any token on the command line that does not match (is not "claimed"
by) any part of the picture is added to the UNCL argument if one has been
defined. A single blank separates each token added. If no UNCL argument is
defined, unclaimed tokens are erroneous and the user's command line is in error.
An example is shown under the option argument section, since with only object
arguments in the picture and on the command line, the REST and UNCL
arguments perform the same function. This is because scanning proceeds left to
right, and all arguments on the command line that also appear in the picture must
necessarily be claimed.

The REST data type can be used with either kind of argument; option arguments
are explained below. When used with an object argument, if the REST argument
is reached in the picture and more text remains on the command line, the entire
remaining text is assigned to the REST argument. For example, if the picture is

dec ; t r e e ; r e s t ; end

and the structure is

d e l 1 s t r u c ,
2 dec_arg f ixed b i n (3 1) ,
2 t r e e _ a r g char(128) var ,
2 r e s t _ a r g char(160) va r ;

then, for the command line

786 a>b>c>d foo 99 z o t > n i l

the value 786 is assigned to struc.dec arg; a>b>c>d to struc.tree org, and
foo 99 zot>nil to struc.rest arg.

Default Values: What happens if an argument specified in the picture is not
supplied by the user? In the absence of a default value specified as described
below, the corresponding structure element is assigned a "default default" value,
which is the null string for string types, 0 for arithmetic types, and null () for the
pointer type.

The picture may specify some other default value. The syntax is

da ta type = d e f a u l t - v a l u e ;

Second Edition C-5

Subroutines Reference II: File System

For example,

t r e e = @. l i s t ; dec = 99; da te = 8 1 - 1 - 1 ; end

del 1 struc,
2 tree_arg char(128) var,
2 dec_arg fixed bin(31),
2 date_arg fixed bin(31);

(null command line)

would assign @.LIST (note uppercase conversion) to struc.tree _arg\ 99 to
struc.dec arg', and 81-01-01.00:00:00 (in file-system format) to struc.date arg.

Repeat Counts: To save typing, a repeat count feature is included in the
syntax. To use it, simply prefix the argument group to be duplicated with the
repeat count followed by *. For example,

5 * dec = -1; 2 * char = foo; end

del 1 struc,
2 dec_args(5) fixed bin(31),
2 char_args(2) char(80) var;

The repeat count must be positive and less than 1000.

Note the use of arrays in the structure above. This is not required; one could
employ five scalar fixed bin(31) members with different names in place of
decargs, for example.

Option Arguments: CL$PIX allows convenient handling of PRIMOS
command line option arguments. An argument group that specifies an option
argument is distinguished from an object argument group by beginning with a -.
The general form is

-namel, -name2, ..., -namen { objl obj2 . . . } ;

The -names are the names of the option argument as the user will use them on
the command line. Multiple names are allowed to enable the definition of
synonyms and abbreviations. The simplest option argument has no parameters.
An example is

-listing, -1

del 1 struc,
2 listing_arg bit(l) aligned;

C-6 Second Edition

Argument Parsing by the CL$PIX Subroutine

Note The data type used for all option arguments is controlled by a flag in the keys argument to
CLSPIX. (See above.) Here, assume that keys.pll Jlag is ' 1 'b.

The struc.listing arg will be set to ' 1 'b if-LISTING or -L appears on the
command line; otherwise it is set to 'O'b. There is no default value for a simple
option argument: it either is or is not on the command line. Hence the = syntax is
not relevant here.

If an option argument is to have parameters, they are the objects in the general
form, and are specified using the syntax for object argument groups, except that
no semicolon is used between objects. Suppose that option -LISTING is to
accept a treename parameter. The following could be used:

- l i s t i n g , - 1 t r e e = l i s t i n g . l i s t ; end

del 1 struc,
2 listing bit(l) aligned,
2 listing_tree char(128) var;

If a treename follows -LISTING on the command line, it is assigned to
struc.listing tree; otherwise struc.listing tree is assigned LISTING.LIST. Note
that the default values are assigned to parameters of an option even if that option
is not given on the command line.

As another example, an option -RANGE is to take two integer parameters:

- range dec = 0 dec = 9 99 99; end

de l 1 s t r u c ,
2 r a n g e _ b i t (l) a l i gned ,
2 range_lower f ixed b i n (3 1) ,
2 range_upper f ixed b i n (3 1) ;

- range 7 (command l i n e)

struc.range is '1 'b, struc.range Jower is 7, and struc.range upper is 99999 (the
default).

Using the REST Data Type With Option Arguments: The REST data
type can be used as the data type of the rightmost parameter of an option
argument.

For example,

char ; - s t r i n g r e s t ; -page dec = 1; end

Second Edition C-7

Subroutines Reference II: File System

del 1 struc,
2 char_arg char(80) var,
2 string_flag bit(l) aligned,
2 string_rest char(160) var,
2 page_flag bit(l) aligned,
2 page_number fixed bin(31);

When the -string option is seen on the command line, the entire remainder of
the command is assigned to the REST argument, in this case struc.string_rest.
For example:

foo -page 17 -string abc def -page 0

assigns 'FOO' to struc.char arg; T b to struc. string Jlag\ 'abc def-page 0' to
struc.string rest, '1 'b to struc.page _flag; and 17 to struc.page jiumber.

Note that CL$PIX (at least) is not confused by the second occurrence of -page:
it is part of struc.string rest because it follows the -string option.

Using the UNCL Data Type With Option Arguments: The data type
UNCL may only be assigned to an object argument, not to the parameter of an
option argument. However, it is possible for option arguments to be unclaimed
and hence added to the UNCL argument.

Consider the problem: write a command interface that accepts a treename object
argument and the option argument -time with an integer parameter, but which
accepts and passes on all other arguments to some other interface.

A picture to do this is

tree; UNCL; -time dec; end

del 1 struc,
2 tree_arg char(128) var,
2 UNCL_arg char(160) var,
2 time_flag bit(l) aligned,
2 time_number fixed bin(31);

Then the command

a>b>c zot - l i n e s 78 - t ime 88 def - z i l c h a b c

sets struc.tree_arg to ' A>B>C, struc. UNCLarg to 'zot -lines 78 def-zilch a b
c', struc.time _flag to Tb , and struc.time jiumber to 88. Note particularly that
def is not a parameter of -time but an object argument. Since the TREE argument
was already accounted for, def was unclaimed. The command

- l i m i t s abc def - t ime 90 a>b>c

C-8 Second Edition

Argument Parsing by the CL$PIX Subroutine

sets struc.tree arg to 'A>B>C; struc.UNCLarg to '-limits abc def';
struc.time_flag to ' 1 'b; and struc.time number to 90.

Note Why did struc.tree_arg not get assigned the value 'ABC or 'defl Because of the rule
given for UNCL above.

All parameters that follow an unclaimed option argument will be considered unclaimed.
This is because the picture contains no information about an unclaimed option argument,
and hence CL$PIX cannot know how many parameters may follow it.

Thus all object arguments following an unclaimed option argument are taken as
parameters of that option, until a claimed option argument is found.

Multiple Instances of an Option Argument: A picture may contain more
than one instance of the same option argument. It is recommended that each
instance contains exactly the same synonym or abbreviation names for the
option, though CL$PIX does not check for this.

When multiple instances are used, the semantics are that multiple instances of
the option on the command line are permitted, and will appear in successive slots
of the output structure. The usual use of this capability is best illustrated by an
example.

Suppose that a command accepts an option -select with one parameter; for
example, a string to search for in a file. It seems reasonable to allow the
command to search for multiple strings at once; hence the desire for multiple
instances of the option. A picture might be

-select charl; -select charl; -select charl; end

which allows for three instances of -select. The structure is

del 1 struc,

2 select_l bit(l) aligned,
2 select_l-char char(80) var,
2 select_2 bit(l) aligned,
2 select_2-char char(80) var,
2 select_3 bit(l) aligned,
2 select_3-char char(80) var;

The first -select encountered goes into struc.select!, the second into
struc.select_2, and the third into struc.select_3. Note that the three instances
need not follow each other directly in the picture; and, if they do not, they will
not follow each other in the structure. Thus the existence of multiple instances
of an option does not alter the usual left-to-right assignment of argument groups
to structure member slots.

Any option argument that appears only once in the picture may appear at most
once on the command line.

Second Edition C-9

Subroutines Reference II: File System

Using Repeat Counts With Option Arguments: Repeat counts can be
used with option arguments in a fashion analogous to their use with object
arguments. They are simply a typing saver. Consider the -select example above.
An equivalent picture is

3 * -select charl; end

That is, a repeat count used in this way declares multiple instances of an option
argument, together with its parameters. It is also possible to use repeat counts on
the parameters. Consider the following picture:

3 * - l imi t s 2 * dec = 0; end

It is the same as

-limits dec = 0 dec = 0; -limits dec = 0 dec = 0;
-limits dec = 0 dec = 0 ; end

The Picture in CPL Mode

Syntax Differences: The syntax of the picture accepted in CPL mode is the
same as that accepted by the CPL &ARGS directive. (In fact, CPL uses CL$PIX
in CPL mode to process the &ARGS directive.) The CPL User's Guide gives
details on the syntax and parsing of the &ARGS directive.

The salient differences between CL$PIX syntaxes in normal mode and CPL
mode are

• Repeat counts are not allowed in CPL mode.

• Each object argument and option argument must be preceded by a variable
identifier terminated with a colon, thus:

path:tree; time_of_day:-time dec; unclaimed:UNCL

where path, time of day, and unclaimed are CPL local variable names.
The value of each argument is assigned to the local variable whose name is
prefixed to that argument.

• The end token is not used in CPL mode, and a semicolon is not required
after the last token.

• The maximum length of any argument value in CPL mode is 1024
characters, unlike normal mode where the limit depends on the data type
(80 for CHAR and CHARL, 160 for REST, and so on).

C-10 Second Edition

Argument Parsing by the CL$PIX Subroutine

Local Variable Storage Management: In CPL mode, it is quite possible
for CL$PIX to run out of room in the supplied Local Variables Area while
attempting to set the values of all the local variables involved. If this happens,
CL$PIX will return the error code E$ROOM.

It is the caller's responsibility at this point to allocate more space for the Local
Variables Area, and to call CL$PIX to redo the parse from the start. This process
may have to be repeated in a loop until enough storage has been added to
accommodate the values of all the local variables involved.

Usage Differences: In CPL mode, the "end" keyword is not required to
appear at the end of the picture. For this reason, a picture array is not allowed:
the picture must be supplied as a one-dimensional (scalar) varying string up to
1024 characters long.

Example for CL$PIX

The following example uses CL$PIX to parse a command line.

t e s t :
p roc ;

/* EXTERNAL ENTRY POINTS */

del cl$get entry (char(*)var, fixed bin, fixed bin),
cl$pix entry (bit(16) aligned, char(*)var, ptr,

fixed bin,char(*)var, ptr, fixed bin,
fixed bin, fixed bin, ptr),

errpr$ entry (fixed bin, fixed bin, char(*), fixed
bin, char(*), fixed bin,

tnoua entry (char(*), fixed bin),
todec entry (fixed bin) ,
tnou entry (char(*), fixed bin);

/* INSERT FILES */

$Insert syscom>keys.ins.pll

/* LOCAL DECLARATIONS */

del code fixed bin,
non_st_code fixed bin,
pix_index fixed bin,
bad_index fixed bin,
picture char(30) var,
pic_ptr ptr,
out_ptr ptr,
arg_line char(150) var;

/* standard error code */
/* cl$pix error code */

Second Edition C-11

Subroutines Reference II: File System

del 1 args,
2 dir char(128) var,
2 file char(32) var;

del 1 bvs based,
2 len fixed bin,
2 chars char(1);

/* PROMPT USER FOR ARGUMENTS */

call tnoua('Enter directory pathname and filename: ', 38);

/* READ IN ARGS TO CALL */

call cl$get (arg_line, 150, code);
if code A= 0

then call er$print(k$nrtn, ssc$errd, code,
'CANNOT READ ARGS', 16, 'test', 9);

else do;

/* SET UP DATA FOR CL$PIX */

picture = 'tree; entry; end';
picjptr = addr(picture);
out_ptr = addr(args);

/* CALL CL$PIX TO PARSE ARGUMENTS */

call cl$pix('0003'b4, 'test', pic_ptr, 30, arg_line,
out_ptr, pix_index, bad_index, non_st_code,
nullO);

if non_st_code A= 0
then do;
call tnoua('CANNOT PARSE ARGS, error code = ', 32);
call todec(non_st_code);
call tnouC ', 1) ;
end;

/* OUTPUT ARGUMENTS READ IN */

else do;
call tnoua('Directory pathname = ', 21);
call tnou(addr(dir) -> bvs.chars, addr(dir) ->

bvs.len);
call tnoua('File name = ', 12);

call tnou(addr(file) -> bvs.chars, addr(file) ->
bvs.len);

end;
end;

end;

C-12 Second Edition

Argument Parsing by the CL$PIX Subroutine

The previous program gives the following output:

Enter directory pathname and filename:
<testpk>my_ufd my_file
Directory pathname = <TESTPK>MY_UFD
File name = MY FILE

Calls Made by CL$PIX

TNCHK$
FNCHK$
IDCHK$
PWCHK$

Second Edition C-13

Index of Subroutines by Function

This index lists subroutines grouped by the general functions that they perform.
See the Index of Subroutines by Name to find a particular subroutine's volume,
chapter, and page number.

Second Edition FX-1

Subroutines Reference II: File System

Access Category

Add an object's name to an access category.

Modify an existing ACL on an object.

Set an object's ACL to that of its parent directory.

Make an object's ACL identical to that of another
object.

Obtain the contents of an object's ACL.

Convert an object from ACL protection to
password protection.

Set a specific ACL on an object.

Determine whether an object is accessible for a
given action.

Delete an access category.

Obtain the user-ID and the groups to which it

AC$CAT

AC$CHG

AC$DFT

AC$LIK

AC$LST

AC$RVT

AC$SET

CALACS

CAT$DL

GETID$
belongs.

Obtain the passwords of a subdirectory of the GPAS$$
current directory.

Determine whether an object is ACL-protected. ISACL$

Remove an object's priority access. PA$DEL

Obtain the contents of an object's priority ACL. PA$LST

Set priority access on an object PA$SET

Set the owner and nonowner passwords on an object. SPAS$$

Access Server Names

Catalog a server's Low Level Name.

Look up a server's Low Level Name.

Recatalog a server's Low Level Name.

Uncatalog a server's Low Level Name.

Get the server name of a process.

ISNSC

ISN$L

ISN$RC

ISN$UC

SRS$GN

FX-2 Second Edition

Index of Subroutines by Function

Get the process numbers of all processes
associated with the server name.

List the server names on your system.

SRS$GP

SRS$LN

Arrays

Get a character from an array.

Store a character into an array location.

GCHAR

SCHAR

Asynchronous Lines

Return asynchronous line characteristics.

Return an asynchronous line number.

Set asynchronous line characteristics.

AS$LST

AS$LIN

ASSSET

Attach Points

Set the attach point to a directory specified by the AT$
pathname.

Set the attach point to a specified top-level directory AT$ABS
and partition.

Set the attach point to a specified top-level directory AT$ ANY
on any partition.

Set the attach point to the home directory. AT$HOM

Set the attach point to a specified top-level directory AT$LDEV
on a partition identified by logical disk number.

Set the attach point to the login directory. ATSOR

Second Edition FX-3

Subroutines Reference II: File System

Set the attach point to a directory subordinate to
the current directory.

Set the attach point to the root directory.

Set the attach point to a specified directory, and
optionally, make it the home directory.

AT$REL

ATSROOT

ATCH$$

Binary Search

Perform binary search in ordered table. BINSSR

Buffer Output

Provide free-format output to a buffer. IOASRS

Command Environment

Return caller's maximum command environment
breadth.

Return caller's maximum command environment
depth.

Parse command arguments according to a
character string "picture" of the command line.

Invoke a command from a running program.

Retrieve the value of a global variable.

Set the value of a global variable.

Return a list of commands valid at mini-

CE$BRD

CE$DPT

CL$PIX

CP$

GV$GET

GV$SET

LIST$CMD
command level.

Retrieve the value of a CPL local variable. LV$GET

FX-4 Second Edition

Index of Subroutines by Function

Set the value of a CPL local variable.

Return breadth of caller's current command
environment.

LV$SET

RD$CE DP

Command Level

Call a new command level after an error.

Call a new command level.

Return to PRIMOS.

Initialize the command environment

Return serialization data.

Record command error status.

Signal an error in a subsystem.

CMLVSE

COMLVS

EXIT

ICES

KLMSIF

SETRCS

SSSERR

Condition Mechanism

Continue scan for on-units. CNSIG$

Convert FORTRAN statement label to PL/I format. MKLBSF

Create an on-unit (for FTN users). MKONSF

Create an on-unit (for any language except FTN). MKON$P

Create an on-unit (for PMA and PL/I users). MKONUS

Perform a nonlocal GOTO. PL 1 $NL

Revert an on-unit (for FTN users). RVON$F

Revert an on-unit (for any language except FTN). RVONUS

Signal a condition (for FTN users). SGNLSF

Signal a condition (for any language except FTN.) SIGNLS

Second Edition FX-5

Subroutines Reference II: File System

Controllers, Asynchronous, Multi-line

Data Conversion

Date Formats

Communicate with SMLC driver.

Assign AMLC line.

Communicate with AMLC driver.

T$SLC0

ASNLN$

T$AMLC

Convert a string from lowercase to uppercase
or uppercase to lowercase.

Convert ASCII number to binary.

Convert binary number to ASCII.

Make a number printable if possible.

Convert the DATMOD field (as returned by
RDEN$$) in format DAY, MON DD YYYY

Convert the DATMOD field (as returned by
RDEN$$) in format DAY, DD MON YYYY.

Convert the TIMMOD field (as returned by
RDEN$A).

CASE$A

CNVA$A

CNVB$A

ENCD$A

FDAT$A

FEDT$A

FTIM$A

Convert binary date to quadseconds.

Convert ASCII date to binary format.

Convert binary date to ISO format.

Convert binary date to visual format.

Convert quadsecond date to binary format.

CV$DQS

CV$DTB

CV$FDA

CV$FDV

CV$QSD

FX-6 Second Edition

Index of Subroutines by Function

Devices, Assigning or Attaching

Attach specified devices.

Provide or set aside available logical file unit.

Free a logical file unit number.

ATTDEV

IOCSSG

IOCS$F

Disk I/O

Read ASCII from disk.

Write binary to disk.

Read binary from disk.

Write ASCII to disk (fixed-length records).

Register disk format with driver.

ISAD07

O$BD07

I$BD07

OSAD08

DKGEOS

Drivers, Device-independent

Write ASCII data. WRASC

Read ASCII data. RDASC

Write binary data. WRBIN

Read binary data. RDBIN

Open PRIMOS file and perform other nondata CONTRL
transfer functions. (Primarily for IOCS applications.)

Encryption, of Login Password

Encrypt login validation passwords. ENCRYPTS

Second Edition FX-7

Subroutines Reference II: File System

EPFs

Allocating and Deallocating Space for EPFs

Allocate space for EPF function return information. ALCSRA

Allocate space and set value of EPF function return ALS$RA
information.

Deallocate space for EPF function return information. FRE$RA

Management of EPFs

Perform the linkage allocation phase for an EPF. EPF$ALLC

Return the state of the command processing flags EPFSCPF
in an EPF.

Deactivate the most recent invocation of a specified EPF$DEL
EPF.

Perform the linkage initialization phase for an EPF. EPF$INIT

Initiate the execution of a program EPF. EPF$INVK

Map the procedure images of an EPF file into EPF$MAP
virtual memory.

Combine functions of EPF$ALLC, EPF$MAP, EPF$RUN
EPF$INIT, and EPFSINVK.

Modify user's search rules to allow dynamic linking LNSSET
to a library EPF.

Remove an EPF from a user's address space. REMEPFS

Replace one EPF runfile with another. RPL$

FX-8 Second Edition

Index of Subroutines by Function

Information From In-memory User Profile

Return maximum number of dynamic segments.

Return maximum number of static segments.

Return highest segment number.

DY$SGS

ST$SGS

TL$SGS

Registering EPFs

Return ready or suspended status for registered EPF.

Enable registration of EPFs

Enable unregistration of registered EPFs

EPF$ISREADY

EPFSREG

EPFSUREG

Error Handling, I/O

Set ERRVEC and perform a return or display
ERRVEC message before returning control to
system.

Obtain contents of ERRVEC.

Display I/O error message on user terminal.

ERRSET

GETERR

PRERR

Event Synchronizers and Event Groups

Creating, Using, and Destroying Event Synchronizers

Create an event synchronizer.

Post a notice on an event synchronizer.

Wait on an event synchronizer.

Perform a timed wait on an event synchronizer.

SYNSCREA

SYN$POST

SYN$WAIT

SYNSTMWT

Second Edition FX-9

Subroutines Reference II: File System

Retrieve a notice from an event synchronizer.

Destroy an event synchronizer.

SYNSRTRV

SYNSDEST

Creating, Using, and Destroying Event Groups

Create an event group. SYNSGCRE

Move an event synchronizer into an event group. SYNSMVTO

Remove an event synchronizer from an event group. SYN$REMV

Cause a process to wait on an event group. SYNSGWT

Cause a process to perform a timed wait on an S YNSGTWT
event group.

Retrieve a notice from an event group. SYN$GRTR

Destroy an event group. SYNSGDST

Getting Information About Synchronizers and Groups

Return number of notices or waiting processes on SYN$CHCK
a synchronizer.

Return number of notices on a group at one or S YNSGCHK
all priority levels; if all levels, also return number
of waiting processes.

Indicate whether synchronizer is in group; and if SYN$INFO
it is, return the group number, priority level, and
For Client Use field.

List the synchronizers in group and total number. SYN$LSIG

List the synchronizers in server and total number. SYNSLIST

List the groups in server and total number. SYN$GLST

FX-10 Second Edition

Index of Subroutines by Function

Executable Images

Restore an R-mode executable image.

Restore and resume an R-mode executable image.

Save an R-mode executable image.

REST$$

RESU$$

SAVE$$

EXIT$ Condition

Disable signalling of EXITS condition.

Return state of EXITS signalling.

Enable signalling of EXITS condition.

EXSCLR

EXSRD

EXSSET

File System Objects

Append a specified suffix to a pathname.

Extend or truncate a CAM file.

Retrieve a CAM file's extent map from disk.

Set a CAM file's allocation size value.

Change the open mode of an open file.

Close a file by name and return a bit string
indicating closed units.

Close a file system object by pathname.

Close a file system object by file unit number.

Close a file.

Change the name of an object in the current
directory.

Create a new subdirectory in the cunent directory.

Create a new password directory.

APSFXS

CFSEXT

CFSREM

CFSSME

CHSMOD

CLSFNR

CLOSFN

CLOSFU

CLOSSA

CNAMSS

CREASS

CREPWS

Second Edition FX-11

Subroutines Reference II: File System

Delete a file.

Create a new directory.

Search for specified types of entries in a directory
open on a file unit.

Read sequentially the entries of a directory open on
a file unit.

Return entries meeting caller-specified selection
criteria in a directory open on a file unit.

Return the contents of a named entry in a directory
open on a file unit.

Generate a filename based on another name.

Check for file existence.

Return a file system object's entryname and parent
directory pathname.

Delete a file identified by a pathname.

Return information about a specified file unit.

Verify a supplied string as a valid filename.

Force PRIMOS to write modified records to disk.

Position to end-of-file.

Return the pathname of a specified unit, attach
point, or segment.

Tell whether the partition on which a file exists is
robust.

Determine whether an open file system object is
local or remote.

Return information on the system's list of logical
disks.

List the disks a given user is using.

Convert an existing directory entry to a portal by
mounting the defined portal over the directory.

Read the contents of the Global Mount Table; return a
list of current-mounted disk partitions and the currently
mounted portals accessible by the calling program

Remove a portal entry from the specified directory path
name.

DELE$A

DIR$CR

DIR$LS

DIR$RD

DIR$SE

ENT$RD

EQUAL$

EXST$A

EXTR$A

FILSDL

FINFO$

FNCHK$

FORCEW

GEND$A

GPATH$

GTROB$

ISREM$

LDISK$

LUDSK$

NAM$AD_PORTAL

NAM$L_GMT

NAM$RM_PORTAL

FX-12 Second Edition

Index of Subroutines by Function

Open supplied name. OPEN$A

Read name and open. OPNP$A

Open supplied name with verification and delay. OPNVSA

Read name and open with verification and delay. OPVPSA

Return a logical value indicating whether a specified PAR$RV
partition supports ACL protection and quotas.

Position file. POSNSA

Read, write, position, or truncate a file. PRWF$$

Return directory quota and disk record usage Q$READ
information.

Set a quota on a subdirectory in the current directory. Q$SET

Position in or read from a directory. RDEN$$

Read a line of characters from an ASCII disk file. RDLINS

Return position of file. RPOSSA

Rewind file. RWNDSA

Set or modify an object's attributes in its directory SATR$$
entry.

Delete a segment directory entry. SGDSDL

Determine if a segment directory entry exists. SGDSEX

Open a segment directory entry. SGDSOP

Position in, read an entry in, or modify the size of a SGDR$$
segment directory.

Return the size of a file system entry. SIZES

Open, close, delete, change access, or verify the SRCH$$
existence of an object.

Search for a file with a list of possible suffixes. SRSFXS

Open a scratch file with unique name. TEMPSA

Verify a supplied string as a valid pathname. TNCHKS

Truncate file. TRNCSA

Scan the file system structure. TSCN$A

Open a file anywhere in the PRIMOS file structure. TSRC$$

Check for file open. UNITSA

Second Edition FX-13

Subroutines Reference II: File System

ISC

Return the minimum and maximum file unit numbers UNITSS
currently in use by this user.

Return a logical value indicating whether a wildcard WILDS
name was matched.

Write a line of characters to a file in compressed WTLIN$
ASCII format.

Establish an ISC Session
~ \

Initiator requests the session.

Recipient gets the session request.

Recipient accepts the session.

Initiator gets the session request response.

ISSRS

ISSGRQ

ISSAS

ISSGRS

ISC Message Exchange

Allocate a buffer for a message data part.

Free an allocated data part buffer.

Send a message.

Receive a message.

ISSAB

ISSFB

IS$SM

IS$RM

Monitor ISC Message Exchange Session

Get sessions owned by your server.

Get session attributes.

Get session status.

Get statistics about a session.

ISSGSO

ISSGSA

IS$GSS

IS$STA

FX-14 Second Edition

Index of Subroutines by Function

Terminate ISC Sessions or Respond to Exceptions

Terminate the caller's side of a session.

Get an exception.

Clear an exception.

IS$TS

IS$GE

IS$CE

Keyboard or ASR Reader

Input ASCII from terminal or ASR reader.

Perform same function as ISAA01 but also allow
input from a cominput file.

ISAA01

I$AA12

Logging

Log a user message to the DMS server. DS$SEND_CUSTOMER_UM

Matrix Operations

Generate permutations.

Generate combinations.

PERM

COMB

The following groups contain subroutines for single-precision, double-precision,
integer, and complex operations, respectively.

(* indicates that a subroutine is not available.)

Second Edition FX-15

Subroutines Reference II: File System

Memory

Set matrix to identity matrix.

Set matrix to constant matrix.

Multiply matrix by a scalar.

Perform matrix addition.

Perform matrix subtraction.

Perform matrix multiplication.

Calculate transpose matrix.

Calculate adjoint matrix.

Calculate inverted matrix.

Calculate signed cofactor.

Calculate determinant.

Solve a system of linear equations.

MIDN, DMIDN,
IMIDN, CMIDN

MCON, DMCON,
IMCON, CMCON

MSCL, DMSCL,
IMSCL, CMSCL

MADD, DMADD,
IMADD, CMADD

MSUB,DMSUB,
IMSUB,CMSUB

MMLT, DMMLT,
IMMLT, CMMLT

MTRN, DMTRN,
IMTRN, CMTRN

MADJ, DMADJ,
IMADJ, CMADJ

MINV, DMINV,
*, CMINV

MCOF, DMCOF,
IMCOF, CMCOF

MDET, DMDET,
IMDET, CMDET

LINEQ, DLINEQ,
*, CLINEQ

Allocate memory on the current stack.

Move a block of memory.

Make the last page of a segment available.

Make the last page of a segment unavailable.

Allocate user-class dynamic memory.

Allocate process-class dynamic memory.

Allocate subsystem-class dynamic memory.

ALOC$S

MOVEW$

MM$MLP

MM$MLP

STR$AL

STR$AP

STR$AS

FX-16 Second Edition

Index of Subroutines by Function

Allocate user-class dynamic memory.

Free process-class dynamic memory.

Free user-class dynamic memory.

Free subsystem-class dynamic memory.

Free user-class dynamic memory.

STR$AU

STRSFP

STR$FR

STR$FS

STR$FU

Message Facility

Return the receiving state of a user.

Set the receiving state for messages.

Receive a deferred message.

Send an interuser message.

MSG$ST

MGSETS

RMSGD$

SMSG$

Numeric Conversions

Convert string (decimal) to 16-bit integer.

Convert string (decimal) to 32-bit integer.

Convert string (hexadecimal) to 32-bit integer.

Convert string (octal) to 32-bit integer.

CH$FX1

CHSFX2

CH$HX2

CH$OC2

Paper Tape

Control functions for paper tape. C$P02

Input ASCII from the high-speed paper-tape reader. I$AP02

Output binary data to the high-speed paper-tape O$BP02
punch.

Second Edition FX-17

Subroutines Reference II: File System

Parsing

Input one character from the high-speed paper-tape P1IB
reader to Register A.

Output one character to the high-speed paper-tape PlOB
punch from Register A.

Input one character from paper tape, set high-order PI IN
bit, ignore line feeds, send a line feed when carriage
return is read.

Output one character to the high-speed paper-tape PlOU
punch.

Parse a PRIMOS command line.

Parse character string into tokens.

CMDL$A

GT$PAR

Peripheral Devices

Line Printers

Centronics LP.

Parallel interface to line printer (MPC).

Versatec printer.

Move data to MPC line printer.

Access a spooler queue.

Place file in spool queue and perform SPOOLER
command functions.

O$AL04

O$AL06

OSAL14

T$LMPC

SPOOLS

SP$REQ

FX-18 Second Edition

Printer/Plotter

Index of Subroutines by Function

Versa tec.

Versatec.

0$AL14

T$VG

Card Reader/Punch

Input from parallel card reader.

Input from serial card reader.

Read and print card from parallel interface reader.

Input from MPC card reader.

Parallel interface to card punch.

Parallel interface to card punch and print on card.

Raw data mover.

ISAC03

I$AC09

I$AC15

TSCMPC

O$AC03

0$AC15

T$PMPC

Magnetic Tape

Write EBCDIC to 9-track.

Read EBCDIC from 9-track.

Raw data mover.

0$AM13

ISAM13

T$MT

Phantom Processes

Switch logout notification on or off.

Read logout notification information.

Start a phantom process.

LON$CN

LON$R

PHNTMS

Second Edition FX-19

Subroutines Reference II: File System

Process Suspension

Suspend a process for a specified interval.

Suspend a process (interruptible).

SLEEPS

SLEP$I

Query User

Randomizing

Prompt and read a name. RNAMSA

Prompt and read a number (binary, decimal, octal, or RNUMSA
hexadecimal).

Ask question and obtain a YES or NO answer. YSNOSA

Generate random number and update seed, based
upon a 32-bit word size and using the Linear
Congruential Method.

Initialize random number generator seed.

RAND$A

RNDISA

Search Rules

Locate a file using a search list and open the file. OPSR$
Create a file if the file sought does not exist.

Locate a file using a search list and a list of suffixes. OPSRSS
Open the located file, or create a file if the file sought
does not exist.

Disable an optional search rule. Used to disable rules SRSABSDS
that have been enabled using SR$ENABL.

FX-20 Second Edition

Index of Subroutines by Function

Semaphores

Add a rule to the beginning of a search list or before
a specified rule.

Add a rule to the end of a search list or after a
specified rule.

Create a search list.

Delete a search list.

Disable an optional search rule. Used to disable rules
that have been enabled using SR$ENABL.

Enable an optional search rule. Enabled rules can
be disabled using SR$DSABL or SR$ABSDS.

Determine if a search rule exists.

Free list structure space allocated by SR$LIST or
SR$READ.

Initialize all search lists to system defaults.

Return the names of all defined search lists.

Read the next rule from a search list.

Read all of the rules in a search list

Remove a search rule from a search list.

Set the locator pointer for a search rule.

Set a search list using a user-defined search rules

SR$ADDB

SR$ADDE

SR$CREAT

SR$DEL

SRSDSABL

SRSENABL

SR$EXSTR

SR$FR_LS

SR$INIT

SR$LIST

SR$NEXTR

SR$READ

SR$REM

SR$SETL

SR$SSR
file.

Release (close) a named semaphore. SEM$CL

Drain a semaphore. SEM$DR

Notify a semaphore. SEM$NF

Open a set of named semaphores. SEM$OP

Open a set of named semaphores. SEM$OU

Periodically notify a semaphore. SEM$TN

Return number of processes waiting on a semaphore. SEM$TS

Second Edition FX-21

Subroutines Reference II: File System

Sorting

Wait on a specified named semaphore, with timeout. SEM$TW

Wait on a semaphore. SEM$WT

Sort one file on ASCII key(s).

Sort (multiple key types) or merge sorted files.

Merge sorted files.

Return next merged record to sort.

Close merged input files.

Sort one or several input files.

Prepare sort table and buffers.

Get input records.

Sort tables prepared by SETU$S.

Get sorted records.

Close all sort units.

Heap sort.

Partition exchange sort.

Diminishing increment sort.

Radix exchange sort.

Insertion sort.

Bubble sort.

Binary search or build binary table.

SUBSRT

ASCS$$

MRG1$S

MRG2$S

MRG3SS

SRTF$S

SETUSS

RLSE$S

CMBN$S

RTRN$S

CLNU$S

HEAP

QUICK

SHELL

RADXEX

INSERT

BUBBLE

BNSRCH

FX-22 Second Edition

Strings

Index of Subroutines by Function

Compare two strings for equality.

Compare two substrings for equality.

Fill a string with a character.

Fill a substring with a given character.

Get a character from a packed string.

Left justify, right justify, or center a string within
a field.

Locate one string within another.

Locate one substring within another.

Move a character between packed strings.

Move one string to another.

Move one substring to another.

Compare two character strings.

Determine the operational length of a string.

Rotate string left or right.

Rotate substring left or right.

Shift string left or right

Shift substring left or right.

Test for pathname.

Determine string type.

Return unique bit string.

Convert UIDSBT output into character string.

CSTR$A

CSUBSA

FILLSA

FSUB$A

GCHRSA

JSTR$A

LSTR$A

LSUB$A

MCHRSA

MSTRSA

MSUBSA

NAMEQS

NLENSA

RSTR$A

RSUBSA

SSTR$A

SSUBSA

TREESA

TYPESA

UIDSBT

UIDSCH

Second Edition FX-23

Subroutines Reference II: File System

System Administration

General System Administration

Change the user ID of the System Administrator.

Enable changes to the system attributes.

Check System Administration Directory (SAD) hashing
status for the system or a project.

Close a SAD that has been opened.

Create a System Administration Directory (SAD).

List the attributes of the overall system.

Open an existing System Administration Directory
(SAD).

Rebuild the SAD for either the system or a project.

Check if the user is the System Administrator of the open
SAD.

CUS$CHANGE_ADMIN

CUS$CHANGE_SYSTEM

CUSSCHECK_SAD

CUS$CLOSE_SAD

CUS$CREATE_SAD

CUS$LIST_SYSTEM

CUS$OPEN_SAD

CUS$REBUILD_SAD

CUSSSA MODE

Group Administration

Check if an ACL group is already a system ACL group
or project ACL group.

Add an ACL group to the SAD.

List the system and project ACL groups.

List the projects using an ACL group.

List the users of a system or project ACL group.

CUS$CHECK_GROUP

CUSSGROUP *

CUS$LIST_GROUP_NAMES

CUS$LIST_GROUPS_PROJECTS

CUS$LIST_GROUPS_USERS

Project Administration

Check if a project is on the system.

List the projects using an ACL group.

CUS$CHECK_PROJECT_ID

CUS$LIST_GROUPS_PROJECTS

FX-24 Second Edition

Index of Subroutines by Function

List the attributes of a specific project.

Add, delete, or change a specific project.

CUS$LIST_PROJECT

CUSSPROJECT

User Administration

Check if a user is on the system or a member of a project.

List the users of a system or project ACL group.

List the attributes of a specific user.

List the users on the system or on a project.

Add, delete, or change a specific user.

Check the network to see if a particular user ID
is valid on other machines.

CUS$CHECK_USER_ID

CUS$LIST_GROUPS_USERS

CUS$LIST_USER

CUS$LIST_USER_NAMES

CUSSUSER

CUSSVERIFYJJSER

System Information

General System Information

Return cold-start setting of the ABBREV switch. AB$S W$

Determine if the routine is dynamically accessible. CKDYNS

Return text of the specified system prompt. CL$MSG

Return the model number of the Prime computer. CPUIDS

Return the current date and time. DATES

Return text representation of an error code. ERTXTS

Return text representation of an error code for specified ERSTEXT
PRIMOS subsystem.

Return PRIMOS II information. GINFO

Return the current PRIMOS system name. GSNAMS

Return information on the system's list of logical disks. LDISKS

Indicate if login-over-login is permitted. LOV$SW

Second Edition FX-25

Subroutines Reference II: File System

Return information about a PRIMOS line used for NT$LTS
LAN terminal service.

Return the operating system revision number. PRI$RV

Determine access to a segment. RSEGACS

Check validity of a system name passed to it. SNCHK$

Return the user number and count of users. USERS

System Time Information

Return the CPU time since login. CTIM$A

Return today's date, American style. DATES A

Return today's date as day of year (the Julian date). DOFY$A

Return the disk time since login. DTIM$A

Return today's date, European (military) style. EDAT$A

Return the time of day. TIMES A

System Status and Metering Information

Timers

Return data about a disk partition.

Return data about a process's environment.

Return data about file units.

Return a variety of metering information.

DSSAVL

DSSENV

DSSUNI

GSMETR

Set and read various timers.

Create a timer.

Destroy a timer.

LIMITS

TMRSCREA

TMRSDEST

FX-26 Second Edition

Index of Subroutines by Function

Set an absolute timer.

Set an interval timer.

Set a repetitive timer.

Cancel a timer.

Return the timer type and information.

List the identifiers of the timers within a server.

TMRSSABS

TMR$SINT

TMR$SREP

TMR$CANL

TMR$GTMR

TMR$LIST

User Information

Check that a process has a given amount of time slice ASSURS
left.

Change login validation password. CHGSPW

Expand a line using abbreviations preprocessor. COMSAB

Generate a new login validation password. GEN$PW

Validate a name. IDCHK$

Determine whether a forced logout is in progress. IN$LO

List the disks a given user is using. LUDSK$

Log out a user. LOGO$$

Return a list of devices that a user can access. LUDEV$

Return the user's project identifier. PRJID$

Return amount of CPU time used since login. PTIME$

Validate syntax of a password. PWCHKS

Display PRIMOS command prompt. READY$

Return user number of initiating process. SID$GT

Test whether current user is supervisor. SUSR$

Display standard message showing times used. TISMSG

Return timing information and user identification. TIMDAT

Return permanent time information. TMR$GINF

Return current system time. TMRSGTIM

Second Edition FX-27

Subroutines Reference II: File System

Convert local time to Universal Time.

Convert Universal Time to local time.

List users with same name as caller.

Return user type of current process.

Validate a name against composite identification.

TMRSLOCALCONVERT

TMR$UNIVCONVERT

UNO$GT

UTYPES

VALID$

User Terminal

Functions

Control functions for user terminal. C$A01

Output ASCII to the user terminal or ASR punch. OSAA01

Inhibit or enable CONTROL-P. BREAKS

Get next character from terminal or command file. C1IN

Get next character from command line until carriage C1IN$
return.

Move characters from terminal or command file to CNIN$
memory.

Read a line of text from the terminal or from a COMANL
command file.

Supervise the editing of input from a terminal or a ECLSCC
command file (callable from C).

Supervise the editing of input from a terminal or a ECLSCL
command file.

Read or set erase and kill characters. ERKL$$

Output count characters to the user terminal TNOU
followed by a line feed and carriage return.

Output count characters to the user terminal. TOVFD$

Read one character from the user terminal into TUB
Register A.

Read one character from the user terminal. TUN

FX-28 Second Edition

Index of Subroutines by Function

Write one character from Register A to the user
terminal.

Output char to the user terminal. The data type
must be a 16-bit integer in F77.

Input decimal number.

Input an octal number.

Input a hexadecimal number.

Output a six-character signed decimal number.

Output a six-character unsigned octal number.

Output a four-character unsigned hexadecimal
number.

Output carriage return and line feed.

TlOB

TlOU

TIDEC

TIOCT

TIHEX

TODEC

TOOCT

TOHEX

TONL

Input From User Terminal

Read a character. C1 IN

Read a character. C1 INS

Read a character, suppressing echo. ONES

Read a line. CL$GET

Read a specified number of characters. CNIN$

Read a line into a PRIMOS buffer. COMANL

Parse a command line. RDTK$$

Read a character (function). TUB

Read a character (procedure). T1IN

Read a decimal number. TIDEC

Read a hexadecimal number. TIHEX

Read an octal number. TIOCT

Check for presence of characters in user's terminal TTYSOUT
output buffer.

Second Edition FX-29

Subroutines Reference II: File System

Output to User Terminal

Print a standard error message from PRIMOS or a ER$PRLNT
PRIMOS subsystem.

Print a standard error message. ERRPR$

Provide free-format output. 10 A$

Provide free-format output, for error messages. IOA$ER

Write characters to terminal, followed by NEWLINE. TNOU

Write characters to terminal. TNOUA

Write a signed decimal number. TODEC

Write a hexadecimal number. TOHEX

Write a NEWLINE. TONL

Write an octal number. TOOCT

Write a decimal number, without spaces. TOVFD$

Write one character from Register A. TlOB

Write one character. T10U

Control Output to User Terminal

Inhibit or enable BREAK function. BREAKS

Return information about command output settings. CO$GET

Switch input between the terminal and a file. COMI$$

Switch output between the terminal and a file. COMO$$

Control the way PRIMOS treats the user terminal. DUPLX$

Read or set the erase and kill characters. ERKLSS

Determine if there are pending quits. QUITS

Check for unread terminal input characters. TTY$IN

Clear the terminal input and output buffers. TTYSRS

FX-30 Second Edition

Index of Subroutines by Name

A$xy series

ABSW

ACSCAT

AC$CHG

ACSDFT

AC$LIK

AC$LST

ACSRVT

ACSSET

ALC$RA

ALOCSS

ALS$RA

APSFX$

ASCSSS

ASCS$$

ASCSRT

ASSLIN

AS$LST

ASNLNS

ASSSET

ASSUR$

AT$

FORTRAN compiler addition functions.

Return cold-start setting of ABBREV switch.

Add an object's name to an access category.

Modify an existing ACL on an object.

Set an object's ACL to that of its parent directory.

Set an object's ACL like that of another object.

Obtain the contents of an object's ACL.

Convert an object from ACL protection to password
protection.

Set a specific ACL on an object.

Allocate space for EPF function return information.

Allocate memory on the current stack.

Allocate space and set value of EPF function.

Append a specified suffix to a pathname.

Sort or merge sorted files (multiple file types and key
types). (V-mode)

Sort or merge sorted files (multiple file types and key
types). (R-mode)

Synonym for ASCS$$. See above.

Return asynchronous line number.

Retrieve asynchronous line characteristics.

Assign AMLC line.

Set asynchronous line characteristics.

Check process has given amount of time slice left.

Set the attach point to a directory specified by pathname. II

I

III

II

II

II

II

II

II

II

III

III

III

II

IV

B-7

2-3

2-3

2-5

2-7

2-9

2-11

2-13

2-14

4-16

4-3

4-21

4-4

17-12

IV 17-43

IV

IV

IV

IV

III

II

8-30

8-25

8-20

8-31

2-28

3-3

Second Edition SX-1

Subroutines Reference II: File System

AT$ABS

ATS ANY

AT$HOM

ATSLDEV

AT$OR

AT$REL

ATSROOT

ATCH$$

ATTDEV

BINSSR

BNSRCH

BREAKS

BUBBLE

C$xy series

C$A01

C$M05

CSM10

CSM11

C$M13

C$P02

ClESf

C1IN$

C1NE$

CALAC$

CASE$A

Set the attach point to a specified top-level directory and II
partition.

Set the attach point to a specified top-level directory on
any partition.

Set the attach point to the home directory.

Set the attach point by top-level directory and logical disk II
number.

Set the attach point to the login directory.

Set the attach point relative to the current directory.

Set the attach point to the root directory

Set the attach point to a specified directory.

Change a device assignment temporarily.

Perform binary search in ordered table.

Binary search.

Inhibit or enable BREAK function.

Bubble sort

FORTRAN compiler conversion functions.

Control functions for user terminal.

Control functions for 9-track tape.

Control functions for 7-track tape.

Control functions for 7-track tape (BCD).

Control functions for 9-track tape (EBCDIC).

Control functions for paper tape.

Read a character.

Read a character.

Read a character, suppressing echo.

Determine whether an object is accessible for a given
action.

Convert between uppercase and lowercase.

II

II

II

II

II

II

II

II

IV

III

IV

III

IV

I

IV

IV

IV

IV

IV

IV

III

III

III

II

3-6

3-9

3-11

3-13

3-15

3-17

3-19

A-3

3-5

6-21

17-49

3-55

17-51

B-5

6-4

D-10

D-10

D-10

D-10

6-11

3-5

3-6

3-7

2-16

IV 14-2

SX-2 Second Edition

Index of Subroutines by Name

CAT$DL

CE$BRD

CE$DPT

CF$EXT

CF$REM

CF$SME

CH$FX1

CH$FX2

CH$HX2

CH$MOD

CHSOC2

CHGSPW

CKDYNS

CLSFNR

CLSGET

CLSMSG

CLSPIX

CLINEQ

CLNUSS

CLOSFN

CLO$FU

CLOSSA

CMADD

CMADJ

CMBN$S

CMCOF

CMCON

CMDET

CMDLSA

Delete an access category.

Return caller's maximum command environment breadth. II

Return caller's maximum command environment depth. II

Extend or truncate a CAM file.

Get a CAM file's extent map.

Set a CAM file's allocation size value.

Convert string (decimal) to 16-bit integer.

Convert string (decimal) to 32-bit

Convert string (hexadecimal) to 32-bit integer.

Change the open mode of an open file.

Convert string (octal) to 32-bit integer.

Change login validation password.

Determine if routine is dynamically accessible.

Close a file by name and return a bit string indicating
closed units.

Read a line.

Return text of specified system prompt.

Parse command line according to a command line picture. II

Solve linear equations (complex).

Close all sort units after SRTF$.

Close a file system object by pathname.

Close a file system object by file unit number.

Close a file.

Matrix addition (complex).

Calculate adjoint matrix (complex).

Sort tables prepared by SETU$.

Calculate signed cofactor (complex).

Set constant matrix (complex).

Calculate matrix determinant (complex).

Parse a command line.

II

II

II

II

II

II

III

III

III

II

III

III

III

II

III

III

II

IV

IV

II

II

IV

IV

IV

IV

IV

IV

IV

IV

2-18

6-2

6-3

4-132

4-134

4-137

6-3

6-5

6-7

4-6

6-9

2-29

2-4

4-7

3-8

2-5

6-4

18-7

17-29

4-9

4-10

15-2

18-9

18-11

17-27

18-13

18-15

18-17

16-2

Second Edition SX-3

Subroutines Reference II: File System

CMEDN

CMINV

CMLV$E

CMMLT

CMSCL

CMSUB

CMTRN

CNAM$$

CNIN$

CNSIG$

CNVA$A

CNVB$A

COSGET

COM$AB

COMANL

COMB

COMI$$

COMLV$

COMO$$

CONTRL

CP$

CPUIDS

CREA$$

CREPW$

CSTR$A

CSUB$A

CTIM$A

CUS$CHANGE_ADMIN

CUS$CHANGE_SYSTEM

CUS$CHECK_GROUP

Set matrix to identity matrix (complex).

Calculate signed cofactor (complex).

Call new command level after an error.

Matrix multiplication (complex).

Multiply matrix by scalar (complex).

Matrix subtraction (complex).

Calculate transpose matrix (complex).

Change the name of an object in the current directory.

Read a specified number of characters.

Continue scan for on-units.

Convert ASCII number to binary.

Convert binary number to ASCII.

Return information about command output settings.

Expand a line using Abbreviations preprocessor.

Read a line into a PRIMOS buffer.

Generate matrix combinations.

Switch input between the terminal and a file.

Call a new command level.

Switch output between the terminal and a file.

Perform device-independent control functions.

Invoke a command from a running program.

Return model number of Prime computer.

Create a new subdirectory in the current directory.

Create a new password directory.

Compare two strings for equality.

Compare two substrings for equality.

Return CPU time since login.

Change user ID of the System Administrator.

Enable changes to the system attributes.

Check if ACL group is on a system or a project.

IV

IV

III

IV

IV

IV

IV

II

III

III

IV

IV

III

III

III

IV

III

III

III

IV

II

III

II

II

IV

IV

IV

IV

IV

IV

18-19

18-21

5-5

18-23

18-25

18-27

18-29

4-11

3-11

7-20

14-4

14-6

3-56

2-31

3-13

18-5

3-57

5-6

3-58

4-11

6-8

2-7

A-5

A-7

10-3

10-5

12-2

19-8

19-10

19-16

SX-4 Second Edition

Index of Subroutines by Name

CUS$CHECK_PROJECT_ID

CUS$CHECK_SAD

CUS$CHECK_USER_ID

CUS$CLOSE_SAD

CUS$CREATE_SAD

CUSSGROUP

CUS$LIST_GROUP_NAMES

CUS$LIST_GROUPS_PROJECTS

CUS$LIST_GROUPS_USERS

CUS$LIST_PROJECT

CUS$LIST_PROJECT_NAMES

CUS$LIST_SYSTEM

CUS$LIST_USER

CUS$LIST_USER_NAMES

CUS$OPEN_SAD

CUSSPROJECT

CUS$REBUILD_SAD

CUS$SA_MODE

CUSSUSER

CUS$VERIFY_USER

CV$DQS

CVSDTB

CV$FDA

CV$FDV

CV$QSD

D$xy series

DSINIT

DATES

DATESA

Check if a project is on the system.

Check SAD hashing status for system or project

Check if user is on system or member of project.

Close a System Administration Directory (SAD).

Create a System Administration Directory (SAD).

Add an ACL group to the SAD.

List the system and project ACL groups.

List the projects using an ACL group.

List users of a system or project ACL group.

List the attributes of a specific project.

List the projects on the system.

List the attributes of the system.

List the attributes of a specified user.

List the users on the system or project.

Open a System Administration Directory (SAD).

Add, delete, or change a specific project.

Rebuild a SAD for a system or project.

Check if user is System Administrator of the SAD.

Add, delete, or change a specific user.

Check network for valid user ID on other systems.

Convert binary date to quadseconds.

Convert ASCII date to binary format.

Convert binary date to ISO format.

Convert binary date to visual format.

Convert quadsecond date to binary format.

FORTRAN compiler division functions.

Initialize disk.

Return current date and time.

Return current date, American style.

IV

IV

IV

IV

IV

IV

IV

IV

IV

IV

IV

IV

IV

IV

IV

IV

IV

IV

IV

IV

III

III

III

III

III

I

IV

III

IV

19-18

19-19

19-22

19-24

19-25

19-29

19-31

19-33

19-36

19-39

19-43

19^5

19-50

19-55

19-58

19-61

19-67

19-69

19-70

19-76

6-12

6-13

6-15

6-17

6-19

B-8

D-2

2-11

12-3

Second Edition SX-5

Subroutines Reference //: File System

DELE$A

DIR$CR

DIR$LS

DIR$RD

DIR$SE

DISPLY

DKGEOS

DLINEQ

DMADD

DMADJ

DMCOF

DMCON

DMDET

DMIDN

DMDSTV

DMMLT

DMSCL

DMSUB

DMTRN

DOFY$A

DS$AVL

DS$ENV

DSSUNI

DS$SEND_CUSTOMER_UM

DTIM$A

DUPLX$

DY$SGS

Delete a file.

Create a new directory.

IV

II

Search for specified types of entries in a directory open II
on a file unit.

Read sequentially the entries of a directory open on a file II
unit

Return directory entries meeting caller-specified
selection criteria.

Update sense light settings (obsolete).

Register disk format with driver.

Solve a system of linear equations (double precision).

Matrix additions (double precision).

Calculate adjoint matrix (double precision).

Calculate signed cofactor (double precision).

Set matrix to constant matrix (double precision).

Calculate determinant (double precision).

Set matrix to identity matrix (double precision).

Calculate inverted matrix (double precision).

Matrix multiplication (double precision).

Multiply matrix by a scalar (double precision).

Matrix subtraction (double precision).

Calculate transpose matrix (double precision).

Return today's date as day of year (Julian).

Return data about a disk partition.

Return data about a process's environment.

Return data about file units.

Send a message to the DMS server

Return disk time since login.

Control the way PRIMOS treats the user terminal.

Return maximum number of dynamic segments.

II

15-3

4-15

4-17

4-24

4-29

III

IV

IV

IV

IV

IV

IV

IV

IV

IV

IV

IV

IV

IV

IV

III

III

III

III

IV

III

III

D-2

5-3

18-7

18-9

18-11

18-13

18-15

18-17

18-19

18-21

18-23

18-25

18-27

18-29

12-4

2-61

2-63

2-67

2-12

12-5

3-60

4-24

SX-6 Second Edition

Index of Subroutines by Name

E$xy series

ECLSCC

ECLSCL

EDATSA

ENCDSA

ENCRYPTS

ENTSRD

EPFSAL

EPF$ALLC

EPF$CP

EPFSCPF

EPFSDEL

EPFSDL

EPFSINIT

EPFSNT

EPFSINVK

EPF$VK

EPFSISREADY

EPFSMAP

EPFSMP

EPFSREG

EPFSRN

EPFSRUN

EPFSUREG

EQUALS

FORTRAN compiler exponentiation routines.

Supervise editing of input from terminal or command file III
(callable from C).

Interface to ECLSCC (for non-C programs).

Today's date, European (military) style.

Convert a numeric value to FORTRAN (printable)
format

Encrypt login validation passwords.

Return the contents of a named entry in a directory open II
on a file unit.

Perform the linkage allocation phase for an EPF.

Perform the linkage allocation phase for an EPF.

Return the state of the command processing flags in an
EPF.

I

III

III

IV

IV

III

II

II

II

II

B-8

3-14

3-17

12-6

14-8

6-23

4-38

5-3

5-3

5-5

Return the state of the command processing flags in an
EPF.

II

Deactivate the most recent invocation of a specified EPF. II

Deactivate the most recent invocation of a specified EPF. II

Perform the linkage initialization phase for an EPF. II

Perform the linkage initialization phase for an EPF. II

Initiate the execution of a program EPF. II

Initiate the execution of a program EPF. II

Indicate whether a registered EPF is ready or suspended. II

Map the procedure images of an EPF file into virtual II
memory.

Map the procedure images of an EPF file into virtual II
memory.

Register an EPF. II

Combine functions of EPFSALLC, EPFSMAP, II
EPFSINIT, and EPFSINVK.

Combine functions of EPFSALLC, EPFSMAP, II
EPFSINIT, and EPFSINVK.

Unregister an EPF. II

Generate a filename based on another name. II

5-5

5-7

5-7

5-9

5-9

5-11

5-11

5-15

5-17

5-17

5-20

5-22

5-22

5-25

4^0

Second Edition SX-7

Subroutines Reference II: File System

ERKL$$

ER$PNT

ER$PRINT

ERRPRS

ERRSET

ER$TEXT

ERSTXT

ERTXT$

EX$CLR

EX$RD

EX$SET

EXIT

EXSTSA

EXTR$A

Read or set the erase and kill characters.

Print error messages on terminal (FTN).

Print error messages on terminal.

Print a standard error message (obsolete).

Set ERRVEC (a system error vector) (obsolete).

Return error message to a variable.

Return error message to a variable (FTN).

Return text associated with error code (obsolete).

Disable signalling of EXIT$ condition.

Return state of EXITS signalling.

Enable signalling of EXITS condition.

Return to PRIMOS.

Check for file existence.

Return an object's entryname and parent directory
pathname.

Ill

III

III

III

III

III

III

III

III

III

III

III

IV

II

3-63

3-34

3-34

D-3

D-5

2-15

2-15

D-7

7-36

7-37

7-38

5-7

1 5 ^

4-41

F$xxyy series

FDAT$A

FEDT$A

FIL$DL

FILL$A

FTNFOS

FNCHK$

FORCEW

FRE$RA

FSUB$A

FTIMSA

FORTRAN compiler floating-point functions.

Convert the DATMOD field returned by RDEN$$ to
DAY MON DD YYYY.

Convert the DATMOD field returned by RDEN$$ to
DAY DD MON YYYY.

Delete a file identified by a pathname.

Fill a string with a character.

Return information about a specified file unit.

Verify a supplied string as a valid filename.

Force PRIMOS to write modified records to disk.

Deallocate space for EPF function return information.

Fill a substring with a specified character.

Convert the TIMMOD field returned by REDNSS.

I B-8

IV 14-10

IV 14-11

II

IV

II

II

II

III

IV

IV

4^13

10-7

4^15

4-49

4-51

4-22

10-9

14-12

SX-6 Second Edition

r
r

Index of Subroutines by Name

GSMETR

GCHAR

GCHRSA

GEND$A

GENSPW

GETERR

GETID$

GINFO

GPAS$$

GPATHS

GSNAM$

GT$PAR

GTROBS

GVSGET

GVSSET

H$xy series

HEAP

I$AA01

I$AA12

ISAC03

ISAC09

I$AC15

ISAD07

ISAM05

ISAM10

I$AM11

Return system metering information.

Get a character from an array.

Get a character from a packed string.

Position to end of file.

Generate a login validation password.

Return ERRVEC contents (obsolete).

Obtain the user ID and the groups to which it belongs.

Return PRIMOS II information.

Obtain the passwords of a subdirectory of the current
directory.

Return the pathname of a specified unit, attach point, or
segment.

Return current PRIMOS system name.

Parse character string into tokens.

Find out whether current attach point is on a robust
partition.

Retrieve the value of a global variable.

Set the value of a global variable.

FORTRAN compiler complex number storage.

Heap sort.

Read ASCII from terminal.

Read ASCII from terminal or input stream by REDNSS.

Input from parallel card reader.

Input from serial card reader.

Read and print card from parallel card reader.

Read ASCII from disk.

Read ASCII from 9-track tape.

Read ASCII from 7-track tape.

Read BCD from 7-track tape.

Ill

III

IV

IV

III

III

II

III

II

2-72

6-24

10-11

15-5

2-32

D-8

2-19

2-17

2-21

4-53

III

III

II

II

II

I

IV

IV

IV

IV

IV

IV

IV

IV

IV

IV

2-19

6-25

3-21

6-11

6-13

B-5

17-52

6-7

6-9

7-26

7-28

7-30

5-4

D-12

D-12

D-12

Second Edition SX-9

Subroutines Reference II: File System

I$AM13

I$AP02

I$BD07

I$BM05

I$BM10

ICES

IDCHK$

IMADD

IMADJ

IMCOF

IMCON

IMDET

IMIDN

IMMLT

IMSCL

IMSUB

IMTRN

IN$LO

INSERT

IOA$

IOA$ER

IOA$RS

IOCS$F

IOCS$_FREE_LOGICAL_UNIT

IOCS$G

IOCS$_GET_LOGICAL_UNIT

ISACL$

ISSAB

IS$AS

ISSCE

Read EBCDIC from 9-track tape.

Read paper tape (ASCII).

Read binary from disk.

Read binary from 9-track.

Read binary from 7-track.

Initialize the command environment.

Validate a name.

Matrix addition (integer).

Calculate adjoint matrix (integer).

Calculate signed cofactor (integer).

Set matrix to constant matrix (integer).

Calculate matrix determinant (integer).

Set matrix to identity matrix (integer).

Matrix multiplication (integer).

Multiply matrix by scalar (integer).

Matrix subtraction (integer).

Calculate transpose matrix (integer).

Determine if a forced logout is in progress.

Insertion sort.

Provide free-format output.

Provide free-format output, for error messages.

Perform free-format output to a buffer.

Free logical unit.

Free logical unit.

Get logical unit.

Get logical unit.

Determine whether an object is ACL-protected.

Allocate an ISC message buffer.

Accept an ISC session.

Clear an ISC session exception.

IV

IV

IV

IV

IV

III

III

IV

IV

IV

IV

IV

IV

IV

IV

IV

IV

III

IV

III

III

III

IV

IV

IV

IV

II

V

V

V

D-12

6-12

5-6

D-12

D-12

5-8

2-33

18-9

18-11

18-13

18-15

18-17

18-19

18-23

18-25

18-27

18-29

2-34

17-53

3-36

3-43

6-30

3-4

3-4

3-2

3-2

2-23

10-5

8-9

11-7

SX-10 Second Edition

Index of Subroutines by Name

IS$FB

ISSGE

IS$GRQ

IS$GRS

ISSGSA

IS$GSO

ISSGSS

IS$RM

IS$RS

ISSSM

IS$STA

IS$TS

ISNSC

ISN$L

ISN$RC

ISN$UC

ISREMS

Free an ISC message buffer.

Get an ISC session exception.

Get an ISC session request.

Get an ISC session request response.

Get ISC session attributes.

Get list of ISC sessions owned by this server.

Get ISC session status information.

Receive an ISC message.

Request an ISC session.

Send an ISC message.

Get ISC current session statistics.

Terminate an ISC session.

Catalog ISC server's Low Level Name.

Look up ISC server's Low Level Name.

Recatalog ISC server's Low Level Name File.

Uncatalog (delete) ISC server's Low Level Name.

Determine whether an open file system object is local or II
remote.

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

II

10-7

11-5

8-6

8-12

14-4

14-2

14-7

10-12

8-3

10-9

14-10

11-3

7-5

7-7

7-8

7-9

4-56

JSTRSA Left-justify, right-justify, or center a string. IV 10-13

KLMSIF Get serialization data about Prime software. Ill 5-10

L$xy series

LDISK$

LIMITS

LINEQ

LISTSCMD

LNSSET

FORTRAN compiler complex number loading.

Return information on the system's disk table.

Set and read various timers.

Solve a system of linear equations (single precision).

Return a list of commands valid at mini-command level.

Modify user's search rules to permit dynamic linking to II
EPF library.

I

II

III

IV

II

II

B-5

4-58

8-30

18-7

6-15

5-27

Second Edition SX-11

Subroutines Reference II: File System

LOGO$$

LON$CN

LON$R

LOV$SW

LSTRSA

LSUB$A

LUDEV$

LUDSK$

LV$GET

LV$SET

M$xy series

MADD

MADJ

MCHR$A

MCOF

MCON

MDET

MGSET$

MIDN

MINV

MKLB$F

MKON$F

MKON$P

MKONU$

MM$MLPA

MM$MLPU

MMLT

MOVEW$

Log out a user.

Switch logout notification on or off.

Read logout notification information.

Indicate if the login-over-login function is currently
permitted.

Locate one string within another.

Locate one substring within another.

Return a list of devices that a user can access.

List the disks a given user is using.

Retrieve the value of a CPL local variable.

Set the value of a CPL local variable.

FORTRAN compiler multiplication routines.

Matrix addition (single precision).

Calculate adjoint matrix (single precision).

Move a character from one packed string to another.

Calculate signed cofactor (single precision).

Set matrix to constant matrix (single precision).

Calculate matrix determinant (single precision).

Set the receiving state for messages.

Set matrix to identity matrix (single precision).

Calculate inverted matrix (single precision).

Convert FORTRAN statement label to PL/I format.

Create an on-unit (for FTN users).

Create an on-unit (for any language except FTN).

Create an on-unit (for PMA and PL/I users).

Make the last page of a segment available.

Make the last page of a segment unavailable.

Matrix multiplication (single precision).

Move a block of memory.

Ill

III

III

III

IV

IV

III

II

II

II

I

IV

IV

IV

IV

IV

IV

III

IV

IV

III

III

III

III

III

III

IV

III

2-35

5-24

5-25

2-20

10-15

10-17

2-37

4-61

6-17

6-19

B-8

18-9

18-11

10-19

18-13

18-15

18-17

9-4

18-19

18-21

7-21

7-22

7-24

7-26

4-5

4-6

18-23

6-32

SX-12 Second Edition

Index of Subroutines by Name

MRG1$S

MRG2SS

MRG3$S

MSCL

MSGSST

MSTR$A

MSUB

MSUB$A

MTRN

N$xy series

NAM$AD_PORTAL

NAM$L_GMT

NAM$RM_PORTAL

NAMEQ$

NLEN$A

NT$LTS

Merge sorted files.

Return next merged record.

Close merged input files.

Matrix addition (single precision).

Return the receiving state of a user.

Move one string to another.

Matrix subtraction (single precision).

Move one substring to another.

Calculate transpose matrix (single precision).

FORTRAN compiler negation functions.

Convert an existing directory into a portal.

List accessible partitions and portals.

Delete a portal entry in the specified directory

Compare two character strings.

Determine the operational length of a string.

Return characteristics of PRIMOS network terminal
service line.

IV

IV

IV

IV

III

IV

IV

IV

IV

I

II

II

II

III

IV

IV

17-34

17-38

17-39

18-25

9-2

10-21

18-27

10-23

18-29

B-5

4-63

4-65

4-68

6-33

10-25

8-34

O$AA01

O$AC03

OSAC15

O$AD07

OSAD08

0$ALxx

O$AL04

O$AL06

OSAL14

O$AM05

O$AM10

Write ASCII to terminal or command stream.

Parallel interface to card punch.

Parallel interface card punch and print.

Write compressed ASCII to disk.

Write ASCII uncompressed to disk.

Interface to various printer controllers.

Centronics line printer.

Parallel interface to MPC line printer.

Versatec printer/plotter interface.

Write ASCII to 9-track tape.

Write ASCII to 7-track tape.

IV

IV

IV

IV

IV

IV

IV

IV

IV

IV

IV

6-5

7-31

7-32

D-3

5-7

7-4

7-3

7-3

7-18

D-12

D-12

Second Edition SX-13

Subroutines Reference II: File System

0SAM11

0$AM13

O$BD07

O$BM05

O$BM10

O$BP02

OPEN$A

OPNP$A

OPNV$A

OPSR$

OPSRS$

OPVP$A

OVERFL

PUB

P1IN

PlOB

PlOU

PA$DEL

PA$LST

PA$SET

PAR$RV

PERM

PHANTS

PHNTMS

PL1$NL

POSN$A

PRERR

PRI$RV

PRJID$

Write BCD to 7-track tape.

Write EBCDIC to 9-track tape.

Write binary to disk.

Write binary to 9-track tape.

Write binary to 7-track tape.

Punch paper tape (binary).

Open file specified by filename.

Read filename and open.

Open filename with verification and delay.

Locate a file using a search list and open the file.

Locate a file using a search list and a list of suffixes.

Read filename and open, or verify and delay.

Check if an overflow condition has occurred (obsolete).

Input character from paper tape reader to Register A.

Input character from paper tape to variable.

Output character from Register A to paper-tape punch.

Output character from variable to paper-tape punch.

Remove an object's priority access.

Obtain the contents of an object's priority ACL.

Set priority access on an object.

Return a logical value indicating ACL and quota support. II

Generate matrix permutations.

Start a phantom process (obsolete).

Start a phantom process.

Perform a nonlocal GOTO.

Position in a file.

Print an error message (obsolete).

Return operating system revision number.

Return the user's project identifier.

IV

IV

IV

IV

IV

IV

IV

IV

IV

II

II

IV

III

IV

IV

IV

IV

II

II

II

II

IV

III

III

III

IV

III

III

III

D-12

D-12

5-9

D-12

D-12

6-14

15-6

15-8

15-10

7-3

7-9

15-13

D-9

6-16

6-18

6-17

6-19

2-24

2-25

2-27

4-69

18-31

D-10

5-27

7-28

15-16

D- l l

2-22

2-40

SX-14 Second Edition

Index of Subroutines by Name

PRWF$$

PTTME$

PWCHK$

Q$READ

Q$SET

QUICK

QUIT$

RADXEX

RANDSA

RD$CE_DP

RD$CED

RDASC

RDBIN

RDEN$$

RDLIN$

RDTK$$

READY$

RECYCL

REMEPF$

REST$$

RESUSS

RLSE$S

RMSGD$

RNAMSA

RNDISA

RNUM$A

Read, write, position, or truncate a file.

Return amount of CPU time used since login.

Validate syntax of a password.

Return directory quota and disk record usage information. II

Set a quota on a subdirectory of the current directory.

Partition exchange sort.

Determine if there are pending quits.

Radix exchange sort.

Generate random number and update seed, using 32-bit
word size and the linear congruential method.

Return caller's current command environment breadth.

Return caller's current command environment breadth.

Read ASCII from any device.

Read binary from any device.

Position in or read from a directory.

Read a line of characters from a compressed ASCII disk II
file.

Parse a command line.

Display PRIMOS command prompt.

Tell PRIMOS to cycle to the next user (obsolete).

Remove an EPF from a user's address space.

Restore an R-mode executable image.

Restore and resume an R-mode executable image.

Get input records after SETU$.

Receive a deferred message.

Prompt, read a pathname, and check format.

Initialize random number generator seed.

Prompt and read a number (in any format).

II

III

III

II

II

IV

III

IV

IV

II

II

IV

IV

II

II

III

III

III

II

III

III

IV

III

IV

IV

IV

4-71

2-41

2 ^ 2

4-79

4-82

17-54

3-65

17-55

13-2

6-21

6-21

4-5

4-9

A-8

4-85

3-22

2 ^ 3

D-14

5-29

5-18

5-20

17-26

9-6

11-2

13-4

11-4

Second Edition SX-15

Subroutines Reference II: File System

RPL$

RPOS$A

RRECL

RSEGAC$

RSTR$A

RSUB$A

RTRN$S

RVON$F

RVONU$

RWND$A

S$xy series

SATR$$

SAVE$$

SCHAR

SEM$CL

SEM$DR

SEM$NF

SEM$OP

SEM$OU

SEM$TN

SEM$TS

SEM$TW

SEM$WT

SETRCS

SETU$S

SGD$DL

SGD$EX

SGD$OP

Replace one EPF runfile with another.

Return position of file.

Read disk record.

Determine access to a segment.

Rotate string left or right.

Rotate substring left or right.

Get sorted records.

Revert an on-unit (for FTN users).

Revert an on-unit (for any language except FTN).

Reposition file.

FORTRAN compiler subtraction routines.

Set or modify an object's attributes.

Save an R-mode executable image.

Store a character into an array location.

Release (close) a named semaphore.

Drain a semaphore.

Notify a semaphore.

Open a set of named semaphores.

Open a set of named semaphores.

Periodically notify a semaphore.

Return number of processes waiting on a semaphore.

Wait on a specified named semaphore, with timeout.

Wait on a specified named semaphore.

Record command error status.

Prepare sort table and buffers for CMBN$.

Delete a segment directory.

Find out if there is a valid entry at the current position
within the segment directory on a specified unit.

Open a segment directory entry.

II

IV

IV

III

IV

IV

IV

III

III

IV

I

II

III

III

III

III

III

III

III

III

III

III

III

III

IV

II

II

5-31

15-17

D-5

2-23

10-26

10-29

17-28

7-29

7-30

15-18

B-8

4-87

5-21

6-35

8-16

8-17

8-18

8-20

8-20

8-24

8-26

8-27

8-28

5-14

17-22

4-92

4-93

II 4-94

SX-16 Second Edition

Index of Subroutines by Name

SGDR$$

SGNLSF

SHELL

SID$GT

SIGNL$

SIZES

SLEEPS

SLEPSI

SLITE

SLITET

SMSGS

SNCHKS

SPSREQ

SPASSS

SPOOLS

SRSABS

SRSABSDS

SRSADB

SRSADDB

SRSADDE

SRSADE

SRSCRE

SRSCREAT

SRSDEL

SRSDSA

SRSDSABL

SRSENA

Position, read, or modify a segment directory.

Signal a condition.

Diminishing increment sort.

Return user number of initiating process.

Signal a condition.

Return the size of a file system entry.

Suspend a process for a specified interval.

Suspend a process (interruptible).

Set the sense light on or off (obsolete).

Test sense light settings (obsolete).

Send an interuser message.

Check validity of system name passed to it.

Insert a file into the spool queue.

Set the owner and nonowner passwords on an object.

Insert a file into the spool queue.

Disable optional rules enabled by SRSENABL.

Disable optional rules enabled by SRSENABL.

Add a rule to the start of a search list or before a specified II
rule within the list.

Add a rule to the start of a search list or before a specified II
rule within the list.

Add a rule to the end of a search list or after a specified II
rule within the list.

Add a rule to the end of a search list or after a specified II
rule within the list

Create a search list. II

Create a search list. II

Delete a search list. II

Disable an optional search rule enabled by SRSENABL. II

Disable an optional search rule enabled by SRSENABL. II

Enable an optional search rule. II

II

III

IV

III

III

II

III

III

III

III

III

III

IV

II

IV

II

II

II

4-96

7-31

17-56

2-44

7-33

4-102

8-34

8-35

D-15

D-16

9-8

2-25

7-12

2-29

7-10

7-16

7-16

7-19

7-19

7-22

7-22

7-25

7-25

7-27

7-29

7-29

7-32

Second Edition SX-17

Subroutines Reference II: File System

SRSENABL

SR$EXS

SRSEXSTR

SR$FR_LS

SR$FRL

SR$INI

SR$INIT

SR$LIS

SR$LIST

SR$NEX

SR$NEXTR

SR$REA

SR$READ

SR$REM

SR$SET

SR$SETL

SR$SSR

SRCH$$

SRSFX$

SRS$GN

SRS$GP

SRS$LN

SRTFSS

SS$ERR

SSTR$A

SSUB$A

SSWTCH

ST$SGS

Enable an optional search rule.

Determine if a search rule exists.

Determine if a search rule exists.

Free list structure space allocated by SR$LIST or
SRSREAD.

Free list structure space allocated by SR$LIST or
SRSREAD.

Initialize all search lists to system defaults.

Initialize all search lists to system defaults.

Return the names of all defined search lists.

Return the names of all defined search lists.

Read the next rule from a search list.

Read the next rule from a search list.

Read all of the rules in a search list.

Read all of the rules in a search list

Remove a rule from a search list.

Set the locator pointer for a search rule.

Set the locator pointer for a search rule.

Set a search list via a user-defined search rules file.

Open, close, delete, or verify existence of an object.

Search for a file with a list of possible suffixes.

Get server name.

Get process numbers of all processes that have the same
server name.

List all active ISC server names.

Sort several input files.

Signal an error in a subsystem.

Shift string left or right.

Shift substring left or right.

Test sense switch settings (obsolete).

Return maximum number of static segments.

II

II

II

II

7-32

7-35

7-35

7-39

II 7-39

II

II

II

II

II

II

II

II

II

II

II

II

II

II

V

V

V

IV

III

IV

IV

III

III

7^11

7-41

7 ^ 3

7-43

7-47

7 ^ 7

7-52

7-52

7-56

7-59

7-59

7-62

4-105

4-114

7-10

7-11

7-13

17-16

5-16

10-31

10-33

D-17

4-25
^ >

SX-18 Second Edition

Index of Subroutines by Name

STRSAL

STRSAP

STRSAS

STR$AU

STR$FP

STRSFR

STRSFS

STRSFU

SUBSRT

SUBSRT

SUSRS

SYN$CHCK

SYNSCK

SYNSCR

SYN$CREA

SYN$DE

SYNSDEST

SYN$GC

SYN$GCHK

SYNSGCRE

SYN$GD

SYN$GDST

SYN$GK

SYN$GL

SYNSGLST

SYN$GR

SYN$GRTR

SYNSGT

Allocate user-class dynamic memory. Ill 4-7

Allocate process-class dynamic memory. Ill 4-8

Allocate subsystem-class dynamic memory. Ill 4-9

Allocate user-class dynamic memory. Ill 4-10

Free process-class dynamic memory. Ill 4-11

Free user-class dynamic memory. Ill 4-12

Free subsystem-class dynamic memory. Ill 4-13

Free user-class dynamic memory. Ill 4-14

Sort file on ASCII key. (V-mode) IV 17-10

Sort file on ASCII key. (R-mode) IV 17-41

Test if current user is supervisor. Ill 2-45

Return total of notices or waiters on a synchronizer. V 4-2

Return total of notices or waiters on a synchronizer V 4-2
(FTN).

Create an event synchronizer (FTN). V 2-5

Create an event synchronizer. V 2-5

Destroy an event synchronizer (FTN). V 2-15

Destroy an event synchronizer. V 2-15

Create an event group (FTN). V 3-5

Return total of notices or waiters on an event group. V 4-4

Create an event group. V 3-5

Destroy an event group (FTN). V 3-18

Destroy an event group. V 3-18

Return total of notices or waiters on an event group V 4-4
(FTN).

List total of groups in server and their identifiers (FTN). V 4-12

List total of groups in server and their identifiers. V 4-12

Retrieve a notice from a group (FTN). V 3-15

Retrieve a notice from a group. V 3-15

Perform a timed wait on a group (FTN). V 3-13

Second Edition SX-19

Subroutines Reference II: File System

SYN$GTWT

SYN$GW

SYNSGWT

SYN$IF

SYNSENFO

SYN$LG

SYNSLIST

SYN$LS

SYNSLSIG

SYN$MV

SYN$MVTO

SYN$PO

SYN$POST

SYN$REMV

SYN$RM

SYN$RTRV

SYN$RV

SYN$TMWT

SYN$TW

SYN$WAIT

SYN$WT

T$AMLC

T$CMPC

T$LMPC

T$MT

T$PMPC

T$SLC0

Perform a timed wait on a group.

Wait on an event group (FTN).

Wait on an event group.

Return information about a synchronizer (FTN).

Return information about a synchronizer.

List total of synchronizers in group and their identifiers
(FTN).

List total of synchronizers in server and their identifiers.

List total of synchronizers in server and their identifiers
(FTN).

List total of synchronizers in group and their identifiers. V

Move a synchronizer into a group (FTN).

Move a synchronizer into a group.

Post a notice on a synchronizer (FTN).

Post a notice on a synchronizer.

Remove a synchronizer from a group.

Remove a synchronizer from a group (FTN).

Retrieve a notice from an event synchronizer.

Retrieve a notice from an event synchronizer (FTN).

Perform a timed wait on an event synchronizer.

Perform a timed wait on an event synchronizer (FTN).

Wait on an event synchronizer.

Wait on an event synchronizer (FTN).

Communicate with AMLC driver.

Input from MPC card reader.

Move data to MPC line printer.

Raw data mover for tape.

Raw data mover for card reader.

Communicate with SMLC driver.

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

IV

IV

IV

IV

IV

IV

3-13

3-11

3-11

4-6

4-6

4-8

4-10

4-10

4-8

3-7

3-7

2-7

2-7

3-9

3-9

2-13

2-13

2-11

2-11

2-9

2-9

8-22

7-33

7-15

7-38

7-35

8-3

SX-20 Second Edition

Index of Subroutines by Name

T$VG

TUB

T1IN

T10B

TlOU

TEMPSA

TEXTO$

TI$MSG

TIDEC

TIHEX

TIMDAT

TIME$A

TIOCT

TL$SGS

TMR$CANL

TMR$CN

TMR$CR

TMR$CREA

TMR$DE

TMR$DEST

TMR$GDsfF

TMR$GTIM

TMR$GTMR

TMR$EF

TMR$LIST

TMR$LOCALCONVERT

TMR$LS

TMRSLU

TMR$SA

Interface to Versatec printer.

Read a character (function) from PMA into Register A.

Read a character (procedure).

Write one character from Register A.

Write one character.

Open a scratch file.

Check filename for valid format (obsolete).

Display standard message showing times used.

Read a decimal number.

Read a hexadecimal number.

Return timing information and user identification.

Return time of day.

Read an octal number.

Return highest segment number.

Cancel a timer.

Cancel a timer (FTN).

Create a timer (FTN).

Create a timer.

Destroy a timer (FTN).

Destroy a timer.

Return permanent time information.

Return current system time.

Return information about a timer.

Return permanent time information (FTN).

List total number of timers in server and their identifiers.

Convert local time to Universal Time.

List total number of timers in server and their identifiers
(FTN).

Convert local time to Universal Time (FTN).

Set an absolute umer (FTN).

IV

III

III

III

III

IV

III

III

III

III

III

IV

III

III

V

V

V

V

V

V

III

III

V

III

V

III

V

III

V

7-21

3-28

3-29

3-52

3-53

15-19

D-18

2 ^ 6

3-30

3-31

2-47

12-7

3-32

4-26

5-15

5-15

5-6

5-6

5-8

5-8

2-49

2-51

5-16

2^t9

5-19

2-52

5-19

2-52

5-9

Second Edition SX-21

Subroutines Reference II: File System

TMR$SABS

TMR$SI

TMR$SINT

TMR$SR

TMR$SREP

TMR$TI

TMR$TM

TMR$UL

TMR$UNIVCONVERT

TNCHK$

TNOU

TNOUA

TODEC

TOHEX

TONL

TOOCT

TOVFD$

TREE$A

TRNC$A

TSCN$A

TSRC$$

TTY$DSf

TTY$OUT

TTY$RS

TYPE$A

UID$BT

UID$CH

UNIT$A

Set an absolute timer.

Set an interval timer (FTN).

Set an interval timer.

Set a repetitive timer (FTN).

Set a repetitive timer.

Return information about a timer (FTN).

Return current system time (FTN).

Convert Universal Time to local time (FTN).

Convert Universal Time to local time.

Verify a supplied string as a valid pathname.

Write characters to terminal, followed by NEWLINE.

Write characters to terminal.

Write a signed decimal number.

Write a hexadecimal number.

Write a NEWLINE.

Write an octal number.

Write a decimal number, without spaces.

Test for a pathname.

Truncate a file.

Scan the file system tree structure.

Open, close, delete, or find a file anywhere in the file
structure.

Check for unread terminal input characters.

Check for characters in user's terminal input buffer.

Clear the terminal input and output buffers.

Determine string type.

Return unique bit string.

Convert UID$BT output into character string.

Check for file open.

V

V

V

V

V

V

III

III

III

II

III

III

III

III

III

III

III

IV

IV

IV

II

III

III

III

IV

III

III

IV

5-9

5-11

5-11

5-13

5-13

5-16

2-51

2-54

2-54

4-121

3-45

3 ^ 6

3-47

3-48

3-49

3-50

3-51

10-35

15-21

15-22

A-17

3-66

3-67

3-68

10-38

6-37

6-38

15-27

SX-22 Second Edition

Index of Subroutines by Name

UNITSS

UNO$GT

UPDATE

USERS

UTYPE$

Return caller's minimum and maximum file unit
numbers.

List users with same name as caller.

Update current directory (PRIMOS II only) (obsolete).

Return user number and count of users.

Return user type of current process.

II 4-124

III

III

III

III

2-56

D-20

2-26

2-57

VALIDS Validate a name against composite identification. Ill 2-59

WILDS

WRASC

WRBIN

WRECL

WTLINS

Return a logical value indicating whether a wildcard
name was matched.

Write ASCII.

Write binary to any output device.

Write disk record.

Write a line of characters to a compressed ASCII file.

II 4-125

IV

IV

IV

II

4-3

4-7

D-8

4-126

YSNOSA Ask question and obtain a yes or no answer. IV 11-7

ZS80 Clear double-precision exponent. B-5

Second Edition SX-23

Index

Access, changing, 4-105
Access category, deleting, 2-18
Access control

See also Access
ACL structure, 2-12
converting ACL to password, 2-13
copying another object's ACLs, 2-9
definition, 2-1
determining protection, 2-23
group ID, 2-12
partition support of, 4-69

setting, 2-14
user ID, 2-12

Access

See also Access control
calculating accessibility, 2-16

category, 2-3,2-15
changing, 2-5
default, 2-7
listing, 2-11

modifying, 2-5
nonowner, 2-17

nonowner passwords, 2-29
owner, 2-17
owner passwords, 2-29
specific, 2-15

Access, priority
obtaining object's contents, 2-25

removing, 2-24
setting, 2-27

ACLs. See Access; Access control
Addressing modes, subroutine libraries,

1-13
Arguments

bits, position values, 1-11
keys, 1-12
parsing command, 6-4
setting bits in, 1-10

Arrays, in declarations, 1-8

ASCII disk file, reading characters from,
4-85

Attach points

any directory, 3-3
current directory, 3-1
definition, 3-1
home directory, 3-11
login directory, 3-15
returning pathname of, 4—53
root directory, 3-19
set to top-level directory by ldev, 3-13
subdirectory, 3-17
top-level directory, 3-6, 3-9

Attaching, to file directory, 3-1
Attributes

date/time last accessed, 4-90
date/time modified, 4-90
dumped bit, 4-90
modifying, 4-87
read/write lock, 4-90
setting directory, 4-15
setting object, 4-87

B
BIN data types, 1-7
BIT data types, 1-7
Bits

position, values of, 1-11
setting in arguments, 1-10

CALL statement
declaration, 1-4
function, 1-5
functions called as subroutines, 1-10

CAM files
allocation size values, 4—130, 4—137

creating, 4-129
defined, 4-128
extending, 4-129
extent maps, 4-129
maximum extent size, 4-130
maximum size of, 4-128

minimum extent size, 4—130
moving physical end of, 4—132
physical layout on disk, 4—134
structure, 4-128
truncating, 4-129

Change open mode, 4-6
CHAR data types, 1-7
CL$PIX option arguments

multiple instances of, C-9
using repeat counts with, C-10

CLSPDC subroutine
argument group, C-2
arguments, default values, C-5
calls, C-13

command line options, -LISTING, C-7
data types, C-2

in CPL mode, C-10
local variable area, C - l l
normal mode, C-l
object argument groups, C-2
operating modes, C-l
option arguments, C-6
punctuation in, C-2

repeat counts, C-6

REST data type options, C-7
syntax differences, C-10

Closing file system objects, 4—7
by pathname, 4-9
by unit number, 4-10

Command arguments, parsing, 6-̂ 4

Second Edition X-1

Subroutines Reference II: File System

Command environment
See also Commands
current breadth, 6-21
discussion, 6-1
maximum breadth, 6-2
setting maximum depth, 6-3

Command line parsing, using CLSPDC,
example of, C- l l

Command processor, discussion, 6-1
Command state flags, EPFs, 5-5
Commands

See also Command environment
invoking from programs, 6-8
listing at mini-command level, 6-15

Common file system name space,
definition, 4-22,4-28,4-66

Converting, directory entry to portal, 4-63
COPY command, -RWLOCK option,

4-91
CPL local variables

retrieving values, 6-17
setting, 6-19

CPL mode, CUPEX subroutine, C-10
usage differences, C-l l

Creating
CAM files, 4-129
directories, 4-15

Data structures
dir_entries, 4—33

dir_entry, 4-22,4-25, 4-28,4-36
Data types

BIN, 1-7
BIT, 1-7
CHAR, 1-7
CUPIX structure, C-4
FLOAT BIN, 1-7
for Prime languages, B-l
parameters, 1-6

POINTER, 1-7
REST, C-5
returned value, 1-6
UNCL, C-5

Date/time last accessed attribute, 4-90
Date/time modified attribute, 4-90
Deactivating an EPF, 5-7

Declarations
array, 1-8
data types in a picture, C-4
DECLARE statement, 1-4
function, 1-4, 1-5
structures, 1-8
subroutines, 1-4

DECLARE statement, RETURN

descriptor, 1-5
Default values, arguments in a picture,

C-5
Delete access, 4-43
Deleting

access category, 2-18
files, 4-43

portals, 4—68
segment directories, 4-92

Dependency list, of registered EPFs, 5-21
dir_cntry, valid attributes for root

directory, 4-22,4-28,4-36
Directories

See also Segment directories
adding objects to, 4-109
converting to portal, 4—63
creating, 4-15
deleting empty, 4-43
listing entries, 4-17
obtaining quota information, 4-79
reading entries in, 4-24
searching through, 4-17,4-29
setting attributes, 4-15
setting quotas, 4-82

Directory passwords, obtaining, 2-21
Disk partitions, listing currently mounted,

4-65
Disk Record Availability (DSKRAT) file,

indication of, 4-26
Disk Record Availability Table

(DSKRAT), pool of free records,
4-43

Disk records, obtaining information on,

4-79
Disk table

local disks, 4-61
obtaining information on, 4—58
use at Rev. 23.0,4-61

Disks, listing by user, 4-61
Dumped bit, 4-90

Dynamic linking, to an library EPF, 5-27

EPFs

See also Registered EPFs
command state flags, 5-5
deactivating, 5-7
dynamic linking to library EPF, 5-27
enabling registration, 5-20
initializing, 5-9
invoking program, 5-11
linkage allocation, 5-3
managing, 5-1

mapping procedure images, 5-17
ready or suspended status, 5-15
removing from user's address space,

5-29
replacing one with another, 5-31

Error codes

in subroutine arguments, 1-12
SYSCOM directory, 1-13

Extending CAM files, 4-129
Extent maps, definition, 4-129
Extents, 4-128

File system

common file system name space, 4-22,
4-28,4-66

obsolete subroutines, A-l
File system objects

changing access to, 4-105
changing name of, 4-11
closing, 4-7,4-105
closing by pathname, 4-9
closing by unit number, 4-10

creating CAM files, 4-109
deleting, 4-105
determining local or remote, 4-56
opening, 4-105,4—107
returning size of, 4-102
verifying, 4-105,4-109

File units
obtaining information about, 4-45
returning numbers in use, 4-124

X-2 Second Edition

Index

File units (Continued)
returning pathname of, 4-53

Filenames
extracting from pathname, 4-41
generating, 4—40
verifying, 4-49

Files
See also CAM files; File system objects
CAM, 4-128

creating CAM, 4-109
deleting, 4-43
Disk Record Availability (DSKRAT),

4-26
forced writing to disk, 4-51
locating and opening subroutines, 7-9
manipulating, 4-71
using search list to locate and open, 7-5

writing in compressed ASCII format,
4-126

FIXED BIN data types, 1-7
FLOAT BIN data types, 1-7
Forced writing to disk, 4—51
Functions

CALL statement, 1-5
declaration, 1-4
defined, 1-1
OPTIONAL RETURNED VALUE,

1-10
RETURNED VALUE, 1-10
subroutines, called as, 1-10

G
Global Mount Table

propagating references, 4—54
reading contents of, 4-65
references to remote portals, 4-54
remote disks, 4—61
remote system names, 4-60

Global variables
retrieving values, 6-11
setting value, 6-13

/
Initializing, EPFs, 5-9
Invoking commands from programs, 6-8
Invoking program EPFs, 5-11

K
Keys, in arguments, 1-12

Linkage allocation, EPFs, 5-3
LIST_REGISTERED_EPF command,

5-25
Listing, directories, 4-17
Listing commands, at mini-command

level, 6-15
Listing disks, by user, 4-61
-LISTING option, CLSPIX subroutine,

command line options, C-7
Local file system object, determining,

4-56
Local variables. See CPL local variables
Locating files, search rule subroutines,

7-5
Login directory, setting attach point to,

3-15

M
MAGRST utility

See also MAGSAV utility
restoring read/write locks, 4-91

MAGSAV utility

See also MAGRST utility
saved by, 4-26
saving read/write locks, 4—91

Messages, MAXIMUM QUOTA

EXCEEDED, 4-83
Mini-command level, listing commands,

6-15
Modifying, object attributes, 4—87

N
Nonowner passwords, 2-29

Object names
See also File system objects
changing name of, 4—11

Omitting parameters, example of, 1-9
Open mode, changing, 4-6
Option arguments, CLSPIX, C-6
OPTIONAL RETURNED VALUES,

functions, 1-10
Owner passwords, 2-29

Parameters
data types, 1-6
data types in, 1-6
omitting, 1-9
subroutines, 1-5

Parsing, command arguments, 6-4
Partitions

ACL support of, 4—69

listing currently mounted, 4-65
Passwords

naming conventions, 2-29
nonowner, 2-29
obtaining directory, 2-21
owner, 2-29

Pathnames
appending suffixes, 4-4
returning, 4—53
verifying string as, 4—121

Picture syntax, CLSPIX, C-l
POINTER data types, 1-7
Portal, definition, 4-68
Portals

affect on root directory, 4-22,4-26,
4-28,4-36

converting directory to, 4—63

definition, 4-64
deleting, 4-68

listing currently mounted, 4-65
referencing remote systems, 4-64

Positioning, files, 4-71
Priority access. See Priority ACLs
Priority ACLs

discussion, 2-27
obtaining object's contents, 2-25

removing, 2-24
setting, 2-27

Programs, invoking commands from, 6-8

Second Edition X-3

Subroutines Reference II: File System

Q
Quotas

obtaining information on, 4-79
partition, 4-69
setting on subdirectories, 4-82

Read/write locks
meaning of bits, 4—90
saving and restoring, 4—91
with segment directories, 4-90

Reading, characters from ASCII disk file,
4-85

Reading, files, 4-71
Records

See also Disk records
forced writing to disk, 4-51

Registered EPFs
See also EPFs
database for, 5-21
definition, 5-1
dependency list of, 5-21
enabling registration, 5-20
status, 5-15

unregistering, 5-25
Remote file system object, determining,

4-56
Removing, priority ACLs, 2-24
Removing EPFs, from user's address

space, 5-29
Repeat counts, CLSPIX argument groups,

C-6
Replacing EPFs, one EPF runfile with

another, 5-31
REST argument, -STRING option with,

C-S
REST data type, CLSPIX subroutine, C-5
RETURNED VALUE, functions, 1-10
Returned values, data types, 1-6
Returning, size of file system entry, 4-102
Returning pathnames, 4-53
RETURNS descriptor, DECLARE

statement, 1-5
Robust partitions

creating CAM files on, 4-109
files, 4-128

searching, 3-21

Root directory, 4-28,4-36
affect of EXTRSA, 4-42
setting attach point to, 3-19
valid attributes, 4-28,4-36
valid dir_entry attributes, 4-22,4-28,

4-36
-RWLOCK option, COPY command,

4-91

Search rule subroutines
adding to search list, 7-19, 7-22
and arguments, 7-2

and structures, 7-53

creating blank search list, 7-25

deleting search lists, 7-27
determining search rule existence in

search list, 7-35
disabling optional search rules, 7-29
disabling rules, 7-16
enabling optional search rules, 7-32
freeing allocated space, 7-39
initializing search lists to system

defaults, 7-41

listed, 7-1
locating and opening files, 7-3
modifying the locator pointer, 7-59
reading from search lists, 7-47,7-52
removing rules from search list, 7-56
returning search list names, 7-43

setting search lists, 7-62
suffixes used to open files, 7-9

Search rules

modifying for dynamic linking, 5-27
optional, 7-17

Searching, directories, 4-17
Segment directories

closing files within, 4-110
creating, 4-110

creating files within, 4—110
definition, 4—110
deleting, 4-92,4-110
deleting files within, 4-110
entry validation, 4-93
modifying size of, 4-96
opening entries, 4-94
opening files within, 4-110

operations involving, 4—110
positioning in, 4—96
read/write locks, 4-90

reading entry in, 4-96
returning pathname of, 4-53

Setting
CPL local variables, 6-19
global variable values, 6-13
maximum breadth of command

environment, 6-2

maximum depth of command
environment, 6-3

object attributes, 4—87
priority ACLs, 2-24
quotas on subdirectories, 4-82

Structures, in declarations, 1-8
Subdirectories, operations on, 4—109
Subroutines

arguments, keys in, 1-12
CALL statement, 1-4
contents of, 1-2
declaration, 1-4
defined, 1-1
error codes, 1-12
example of, 1-3
obsolete, A-l
parameters, 1-5

usage section, 1-2
Suffixes

appending to pathname, 4-4
searching for file, 4—114

SYSCOM directory, error codes, 1-13

Truncating
CAM files, 4-129
files, 4-71

u
UNCL data type

CLSPIX subroutine, C-5
with option arguments, C-8

Unregistering EPFs, 5-25
Usage section

date types in, 1-6

X-4 Second Edition

Index

Usage section (Continued)
explained, 1-2
parameters, 1-6

User ID, retrieving, 2-19

Validating, segment directory entries,
4-93

Values
retrieving CPL local variable, 6-17
retrieving global variable, 6-11
setting CPL local variable, 6-19

Variables. See CPL local variables; Global

variables
Verifying, filenames, 4—49

w
Wildcards, matching name with, 4-125
Writing files, 4-71

in compressed ASCII format, 4-126
to disk, forced, 4-51

Second Edition X-5

r
r

r

r

r
r

Surveys

Reader Response Form

Subroutines Reference II: File System

DOC10081-2LA

Your feedback will help us continue to improve the quality, accuracy, and organization of our user publications.

1. How do you rate this document for overall usefulness?

I | excellent • very good • good • fair • poor

2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer companies?

I I Much better • Slightly better • About the same
I I Much worse • Slightly worse • Can't judge

5. Which other companies' manuals have you read?

Name:

Position:

Company:.

Address:_

.Postal Code:.

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

Prime,
Attention: Technical Publications
Bldg 10
Prime Park, Natick, Ma. 01760

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

	Front Cover
	Title Page
	i
	Copyright
	ii
	How to Order Technical Documents
	iii
	Reading Path for PRIMOS Documentation
	iv
	Contents
	v
	vi
	vii
	viii
	ix
	x
	About This Book
	xi
	xii
	xiii
	xiv
	xv
	xvi
	Part I:
	Introduction
	Chapter 1
	Overview of Subroutines
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	1-11
	1-12
	1-13
	1-14
	Part II:
	File Access and Management Subroutines
	Chapter 2
	Access Control
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	Chapter 3
	Attaching
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	Chapter 4
	File and Directory Manipulation
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	4-70
	4-71
	4-72
	4-73
	4-74
	4-75
	4-76
	4-77
	4-78
	4-79
	4-80
	4-81
	4-82
	4-83
	4-84
	4-85
	4-86
	4-87
	4-88
	4-89
	4-90
	4-91
	4-92
	4-93
	4-94
	4-95
	4-96
	4-97
	4-98
	4-99
	4-100
	4-101
	4-102
	4-103
	4-104
	4-105
	4-106
	4-107
	4-108
	4-109
	4-110
	4-111
	4-112
	4-113
	4-114
	4-115
	4-116
	4-117
	4-118
	4-119
	4-120
	4-121
	4-122
	4-123
	4-124
	4-125
	4-126
	4-127
	4-128
	4-129
	4-130
	4-131
	4-132
	4-133
	4-134
	4-135
	4-136
	4-137
	4-138
	Chapter 5
	EPF Management
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	Part IV
	Command Environment Subroutines
	Chapter 6
	Command Environment
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	Part V
	Search Rules Subroutines
	Chapter 7
	Search Rules
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	7-51
	7-52
	7-53
	7-54
	7-55
	7-56
	7-57
	7-58
	7-59
	7-60
	7-61
	7-62
	7-63
	7-64
	7-65
	Appendix A
	Obsolete File System Subroutines
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	Appendix B
	Data Type Equivalents
	B-1
	B-2
	B-3
	Appendix C
	Argument Parsing by the CL$PIX Subroutine
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	C-9
	C-10
	C-11
	C-12
	C-13
	Indexes
	Index of Subroutines By Function
	FX-1
	FX-2
	FX-3
	FX-4
	FX-5
	FX-6
	FX-7
	FX-8
	FX-9
	FX-10
	FX-11
	FX-12
	FX-13
	FX-14
	FX-15
	FX-16
	FX-17
	FX-18
	FX-19
	FX-20
	FX-21
	FX-22
	FX-23
	FX-24
	FX-25
	FX-26
	FX-27
	FX-28
	FX-29
	FX-30
	Index of Subroutines by Name
	SX-1
	SX-2
	SX-3
	SX-4
	SX-5
	SX-6
	SX-7
	SX-8
	SX-9
	SX-10
	SX-11
	SX-12
	SX-13
	SX-14
	SX-15
	SX-16
	SX-17
	SX-18
	SX-19
	SX-20
	SX-21
	SX-22
	SX-23
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	Surveys
	
	

